Neuropediatrics 2017; 48(04): 226-232
DOI: 10.1055/s-0037-1601859
Review Article
Georg Thieme Verlag KG Stuttgart, New York

Inherited and Acquired Muscle Weakness: A Moving Target for Diagnostic Muscle Biopsy

Werner Stenzel
1   Department of Neuropathology, Charité—Universitätsmedizin, Berlin, Germany
,
Benedikt Schoser
2   Friedrich-Baur-Institut, Neurologische Klinik, Klinikum der Universität München, München, Germany
› Author Affiliations
Further Information

Publication History

02 February 2017

08 March 2017

Publication Date:
15 April 2017 (online)

Abstract

Inherited and acquired muscular weakness is caused by multiple conditions. While the inherited ones are mostly caused by mutations in genes coding for myopathic or neurogenic diseases, the acquired ones occur due to inflammatory, endocrine, or toxic etiologies. Precise diagnosis of a specific disease may be challenging and may require a multidisciplinary approach. What is the current place for a diagnostic biopsy of skeletal muscle? Diagnostic muscle biopsy lost in this context its first-tier place in the primary diagnostic workup for some diseases, but it is still mandatory for others. We here summarize conditions in which we believe a diagnostic sample is most relevant and mention those in which a biopsy may be secondary or can even be left out. We would like to stress that muscle biopsy nowadays has a new important place in description and definition of new diseases, for example, discovered by modern genetic approaches.

 
  • References

  • 1 Dubowitz V, Sewy CA, Oldfors A. Myasthenic syndromes. In: Muscle Biopsy. 4th ed. Saunders Elsevier; 2013: 508-512 , chap 21
  • 2 Engel AG, Shen XM, Selcen D, Sine SM. Further observations in congenital myasthenic syndromes. Ann N Y Acad Sci 2008; 1132: 104-113
  • 3 Selcen D, Milone M, Shen XM. , et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol 2008; 64 (01) 71-87
  • 4 Fidziańska A, Glinka Z. Motor endplate remodeling in some cases with congenital myasthenic syndrome. Folia Neuropathol 2010; 48 (03) 200-205
  • 5 Chaouch A, Lochmüller H. Congenital myasthenic syndromes. Goebel HH, Sewry CA, Weller RO. Muscle Diseases. 2nd ed. Wiley Blackwell; 2013: 86-94 , chap. 7
  • 6 Senderek J, Müller JS, Dusl M. , et al. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet 2011; 88 (02) 162-172
  • 7 Belaya K, Rodríguez Cruz PM, Liu WW. , et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 2015; 138 (Pt 9): 2493-2504
  • 8 Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 2000; 15 (03) 228-237
  • 9 Wan J, Yourshaw M, Mamsa H. , et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 2012; 44 (06) 704-708
  • 10 Schottmann G, Wagner C, Seifert F, Stenzel W, Schuelke M. MORC2 mutation causes severe spinal muscular atrophy-phenotype, cerebellar atrophy, and diaphragmatic paralysis. Brain 2016; 139 (Pt 12): e70
  • 11 Knierim E, Hirata H, Wolf NI. , et al. Mutations in subunits of the activating signal cointegrator 1 complex are associated with prenatal spinal muscular atrophy and congenital bone fractures. Am J Hum Genet 2016; 98 (03) 473-489
  • 12 Guenther UP, Varon R, Schlicke M. , et al. Clinical and mutational profile in spinal muscular atrophy with respiratory distress (SMARD): defining novel phenotypes through hierarchical cluster analysis. Hum Mutat 2007; 28 (08) 808-815
  • 13 Wallgren-Petterson C, Jungbluth H. Congenital (structural) myopathies. Rimoin DL. , et al. Emery and Rimoin's Principles and Practice of Medical Genetics. 6th ed. Philadelphia, PA: Elsevier Churchill Livingston; 2013: 1-52
  • 14 Jungbluth H, Voermans NC. Congenital myopathies: not only a paediatric topic. Curr Opin Neurol 2016; 29 (05) 642-650
  • 15 Snoeck M, van Engelen BG, Küsters B. , et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol 2015; 22 (07) 1094-1112
  • 16 Ferreiro A, Quijano-Roy S, Pichereau C. , et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002; 71 (04) 739-749
  • 17 Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Disord 2010; 20 (04) 223-228
  • 18 Lawlor MW, Beggs AH, Buj-Bello A. , et al. Skeletal muscle pathology in X- linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol 2016; 75 (02) 102-110
  • 19 Clarke NF, Waddell LB, Cooper ST. , et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat 2010; 31 (07) E1544-E1550
  • 20 Bevilacqua JA, Bitoun M, Biancalana V. , et al. “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol 2009; 117 (03) 283-291
  • 21 Romero NB, Sandaradura SA, Clarke NF. Recent advances in nemaline myopathy. Curr Opin Neurol 2013; 26 (05) 519-526
  • 22 Malfatti E, Romero NB. Nemaline myopathies: state of the art. Rev Neurol (Paris) 2016; 172 (10) 614-619
  • 23 O'Grady GL, Lek M, Lamande SR. , et al. Diagnosis and etiology of congenital muscular dystrophy: we are halfway there. Ann Neurol 2016; 80 (01) 101-111
  • 24 Bönnemann CG, Wang CH, Quijano-Roy S. , et al; Members of International Standard of Care Committee for Congenital Muscular Dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24 (04) 289-311
  • 25 Dubowitz V, Sewy CA, Oldfors A. Metabolic myopathies I. In: Muscle Biopsy. 4th ed. Saunders Elsevier; 2013: 423-445 , chap 17
  • 26 Malfatti E, Nilsson J, Hedberg-Oldfors C. , et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol 2014; 76 (06) 891-898
  • 27 Dubowitz V, Sewy CA, Oldfors A. Metabolic myopathies II. In: Muscle Biopsy. 4th ed. Saunders Elsevier; 2013: 446-484 , chap 18
  • 28 Young MJ, Copeland WC. Human mitochondrial DNA replication machinery and disease. Curr Opin Genet Dev 2016; 38: 52-62
  • 29 Benveniste O, Stenzel W, Allenbach Y. Advances in serological diagnostics of inflammatory myopathies. Curr Opin Neurol 2016; 29 (05) 662-673
  • 30 Dalakas MC. Inflammatory muscle diseases. N Engl J Med 2015; 372 (18) 1734-1747
  • 31 Mammen AL. Statin-associated autoimmune myopathy. N Engl J Med 2016; 374 (07) 664-669
  • 32 Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med 1975; 292 (07) 344-347
  • 33 Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med 1975; 292 (08) 403-407
  • 34 Mammen AL, Chung T, Christopher-Stine L. , et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum 2011; 63 (03) 713-721
  • 35 Allenbach Y, Drouot L, Rigolet A. , et al; French Myositis Network. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies: inconstant exposure to statin. Medicine (Baltimore) 2014; 93 (03) 150-157
  • 36 Preuße C, Goebel HH, Held J. , et al. Immune-mediated necrotizing myopathy is characterized by a specific Th1-M1 polarized immune profile. Am J Pathol 2012; 181 (06) 2161-2171
  • 37 Stenzel W, Goebel HH, Aronica E. Review: immune-mediated necrotizing myopathies—a heterogeneous group of diseases with specific myopathological features. Neuropathol Appl Neurobiol 2012; 38 (07) 632-646
  • 38 Allenbach Y, Keraen J, Bouvier AM. , et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain 2016; 139 (Pt 8): 2131-2135
  • 39 Vajsar J, Jay V, Babyn P. Infantile myositis presenting in the neonatal period. Brain Dev 1996; 18 (05) 415-419
  • 40 Guarella M, Jurquet AL, Retornaz K. , et al. [Juvenile dermatomyositis and new autoantibodies: cases and review] [in French]. Arch Pediatr 2015; 22 (12) 1263-1267