Are There Changes in the Fatty Acid Profile of Breast Milk with Supplementation of Omega-3 Sources? A Systematic Review

Existem mudanças no perfil de ácidos graxos no leite materno com a suplementação de fontes de ômega 3? Uma revisão sistemática

Yasmin Notarbartolo di Villarosa do Amaral1 Daniele Marano1 Leila Maria Lopes da Silva1 Aline Carnevale Lia Dias Guimarães1 Maria Elisabeth Lopes Moreira1

1Clinical Research Unit, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil

Address for correspondence Yasmin Notarbartolo di Villarosa do Amaral, MSc, Fundação Oswaldo Cruz, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Unidade de Pesquisa Clínica, Av. Rui Barbosa, 716, Flamengo, 22250-020, Rio de Janeiro, RJ, Brasil (e-mail: yasminamaral@hotmail.com).

Abstract

Purpose To evaluate the effect of supplementation with omega-3 sources on the fatty acid composition of human milk.

Methods The review consisted of the search for articles published in PubMed, Biblioteca Virtual de Saúde (Virtual Health Library[VHL]) and Web of Science databases using the following keywords: fatty acids, omega-3, human milk and supplementation; for this purpose, we have used the program of research to integrate the services for the maintenance of autonomy (PRISMA) checklist. The following selection criteria were used: articles in English, Portuguese, Spanish or Italian, published between 2000 and 2015, and about studies performed in humans. We found 710 articles that met the established criteria; however, only 22 of them were selected to be part of this study.

Results All studies found a positive relationship between the consumption of omega-3 sources and their concentration in human milk. The differences in the findings are due to the distinct methods used, such as the specific time of the omega-3 supplementation, the type of omega-3 source offered, as well as the sample size.

Conclusion Although the studies were different in several methodological aspects, it was possible to observe the importance of omega-3 supplementation during gestation and/or the puerperium.

Resumo

Objetivo Avaliar o efeito da suplementação com fontes de ômega 3 sobre a composição de ácidos graxos do leite humano.
Are There Changes in the Fatty Acid of Breast Milk with Supplementation of Omega-3? Amaral et al. 129

Introduction

The importance of polyunsaturated fatty acids of the omega-3 (ω-3) series (docosahexaenoic acid [22:6 ω3, DHA] and eicosapentaenoic acid [20:5 ω3, EPA]) in the development of the fetal brain, as well as in the cognitive and visual acuity of the child, is widely recognized. These fatty acids are part of the composition of the cell membranes and the nervous system, especially DHA, which is preferentially transported by the placenta to the fetus and provides important components to the phospholipid membrane.1,2

The amount of fatty acids in human milk (HM) depends on maternal stocks, dietary intake and synthesis thereof in the mammary glands.3 The concentration of DHA varies specifically, probably due to the woman’s feeding habits, since its synthesis in the mammary gland is minimal.1,2,4 During gestation and lactation, this synthesis is limited by the fetus. For this reason, numerous studies have been conducted to evaluate the effects of the supplementation of this fatty acid on the composition of HM.4,5 Other facts to be taken into consideration are that the concentration of DHA in HM decreases as lactation progresses, and that supplementation during lactation raises DHA concentrations in breast milk.6

The study conducted by Bortolozo et al (2013)7 aimed to evaluate the impact of omega-3 fatty acid supplementation between the third trimester of pregnancy and the third month after delivery, and its influence on the composition of HM. Although no statistical difference was found in the total lipid values between the studied groups, the milk of mothers supplemented with fish oil had higher concentrations of DHA and EPA, demonstrating that a higher consumption of omega-3 may influence its concentration in HM.2 However, the results on the effects of omega-3 supplementation during gestation are still contradictory.4

Due to the controversies between the studies, as well as to the importance of the theme for the health of the newborn, this systematic review aims to evaluate the studies that verified the effects of omega-3 supplementation during pregnancy and/or the puerperium on the composition of HM. The bibliographical survey of this theme aims to assist the maternal and infant populations, together with health professionals, to determine the importance of supplementation, offering subsidies for its practice.

Methods

A systematic review of the available literature consisted of a retrospective search of scientific articles that aimed to evaluate the composition of HM after supplementation with omega-3 fatty acids.

The following bibliographic databases have been used: PubMed, Biblioteca Virtual de Saúde (Virtual Health Library [VHL]) and Web of Science. The search for the articles was performed independently by two researchers, and it began in August and ended in October of 2015. The selected studies were published during the period comprised between 2000 and 2015. The following keywords were used in the search strategy: fatty acids, omega-3, human milk and supplementation.

The bibliographic search was performed according to the established strategy, and resulted in 710 articles. A total of 163 articles were found in the VHL database; however, after reading the abstracts, we have selected 11 thereof; 239 articles were found in the PubMed database; however, we have only selected 21 of these; and 308 articles were found in the Web of Science database, from which we have selected 2 articles. Thus, a total of 22 articles have been selected to compose the present study, reiterating that there were 12 articles replicated in the analyzed databases. The others were suppressed for the following reasons: discussion of different associations between omega-3 and HM, such as allergy, visual acuity and growth; literature reviews; studies replicated across different databases; studies published in other languages and/or that were were not available in their entirety. We used a checklist with 27 items and a 4-step flowchart, advocated by PRISMA,7 which aims to help authors improve the reporting of systematic reviews.
Therefore, a summary of each stage of the selection process of articles that composed this systematic review was arranged in the Flowchart (Fig. 1).

The criteria used in the selection of articles for the review included language (Portuguese, English, Spanish and Italian) and year of publication (2000 to 2015).

The selected articles were compared in relation to the following parameters: year of publication, country of origin, sample size, average age of participants, type of design, rate of follow-up losses, period in which the woman and the milk have been evaluated, omega-3 supplementation period, type of supplement, amount offered, omega-3 evaluation methods, confounding factors controlled in the analysis, estimators used in the statistical analysis, and main results observed.

Results

Once the established strategy was put into practice, 22 articles were selected by bibliographic search to compose the present revision. Four were originated in the United States, one in Canada, one in Denmark, three in Brazil, three in Australia, three in Chile, one in Israel, one in Iceland, one in Mexico, two in Germany, and two in the Netherlands. Regarding the age groups, the majority of the articles (18) only reported the average age of the participants. Regarding language, two articles were written in Spanish, one in Portuguese and the remaining ones in English (Table 1).

As for the design employed, intervention studies were used in most cases, and there was only one observational study. Information on follow-up losses were obtained from 21 studies. The losses ranged from 0 to 78%. The results among the studies, regarding the period of evaluation of the woman and the milk, were quite dissimilar. Regarding the period of supplementation, it was observed that 12 studies evaluated supplementation in infants, 7 in pregnant women, and only 3 evaluated supplementation both in pregnancy and in the puerperium (Table 2).

In regards to the type of supplement or food offered to the participants, 3 studies used dairy supplements, 16 provided DHA-rich oils (such as, tuna, single-celled algae, cod, flaxseed), 2 supplied fish (sardine and jure) and 1 study performed food education to increase the consumption of fish sources. As for the method to evaluate the amount of omega 3 in HM, it was observed that all the studies used chromatography. The DHA value ranged from 170 mg to 2,200 mg per day (Table 3).

Among the 22 selected articles, 9 did not evaluate the consumption of omega-3 food sources. Among those who reported it, the majority (32%) used the food frequency questionnaire (FFQ). Regarding the estimators, it was observed that nine studies used the average, seven used the correlation index, five the median and only one study used the combination of correlation index with the average. Regarding the exclusion criteria, nine articles did not mention them in the methods (Table 4).

Regarding supplementation, all studies found a positive relationship between the consumption of omega-3 sources and their concentration in HM, therefore, highlighting the importance of supplementation of these fatty acids during pregnancy and/or puerperium, which translates into positive results in both cognitive development and visual acuity.

Discussion

The omega-3 and omega-6 polyunsaturated fatty acids consumed through dietary triglycerides are digested in the small intestines and can then be absorbed, transported into the bloodstream and taken up between tissues throughout the body (including brain, retina and heart). Essential dietary
<table>
<thead>
<tr>
<th>Authors</th>
<th>Pub year</th>
<th>Country</th>
<th>Sample (n)</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atalah et al</td>
<td>2009</td>
<td>Chile</td>
<td>352 pregnant women</td>
<td>Intervention group 26.7 and control group 25.0 (average)</td>
</tr>
<tr>
<td>Bergmann et al</td>
<td>2008</td>
<td>Germany</td>
<td>144 pregnant women</td>
<td>30.7 (average)</td>
</tr>
<tr>
<td>Boris et al</td>
<td>2004</td>
<td>Denmark</td>
<td>44 pregnant/ puerperal women</td>
<td>NI</td>
</tr>
<tr>
<td>Bortolozo et al</td>
<td>2013</td>
<td>Brazil</td>
<td>80 pregnant/ puerperal women</td>
<td>25.0 (average)</td>
</tr>
<tr>
<td>Dunstan et al</td>
<td>2007</td>
<td>Australia</td>
<td>98 pregnant women</td>
<td>NI</td>
</tr>
<tr>
<td>Fidler et al</td>
<td>2000</td>
<td>Germany</td>
<td>10 puerperal women</td>
<td>30.6 (average)</td>
</tr>
<tr>
<td>Francois et al</td>
<td>2003</td>
<td>United States</td>
<td>9 puerperal women</td>
<td>28.0 to 39.0</td>
</tr>
<tr>
<td>Gaete and Atalah</td>
<td>2003</td>
<td>Chile</td>
<td>26 puerperal women</td>
<td>26.9 (average)</td>
</tr>
<tr>
<td>Gaete, Atalah and Araya</td>
<td>2002</td>
<td>Chile</td>
<td>28 puerperal women</td>
<td>Intervention group 25.6 and control group 26.4 (average)</td>
</tr>
<tr>
<td>van Goor et al</td>
<td>2009</td>
<td>Netherlands</td>
<td>182 pregnant/ puerperal women</td>
<td>32.4 (average)</td>
</tr>
<tr>
<td>Hawkes et al</td>
<td>2001</td>
<td>Australia</td>
<td>120 puerperal women</td>
<td>30.2 (average)</td>
</tr>
<tr>
<td>Imhoff-Kunsch et al</td>
<td>2011</td>
<td>Mexico</td>
<td>1,094 pregnant women</td>
<td>26.0 (average)</td>
</tr>
<tr>
<td>Jensen et al</td>
<td>2000</td>
<td>United States</td>
<td>26 puerperal women</td>
<td>29.2 (average)</td>
</tr>
<tr>
<td>Marc et al</td>
<td>2011</td>
<td>Canada</td>
<td>32 puerperal women</td>
<td>Intervention group 27.2 and control group 26.9 (average)</td>
</tr>
<tr>
<td>Olafsdottir et al</td>
<td>2006</td>
<td>Iceland</td>
<td>77 puerperal women</td>
<td>31.0 (average)</td>
</tr>
<tr>
<td>Patin et al</td>
<td>2006</td>
<td>Brazil</td>
<td>31 puerperal women</td>
<td>27.9 (average)</td>
</tr>
<tr>
<td>Ribeiro et al</td>
<td>2012</td>
<td>Brazil</td>
<td>51 pregnant women</td>
<td>20.0 to 30.0</td>
</tr>
<tr>
<td>Sherry et al</td>
<td>2015</td>
<td>United States</td>
<td>89 pregnant women</td>
<td>29.0 (average)</td>
</tr>
<tr>
<td>Smit et al</td>
<td>2000</td>
<td>Israel</td>
<td>26 puerperal women</td>
<td>23.5 (average)</td>
</tr>
<tr>
<td>Smithers et al</td>
<td>2010</td>
<td>Australia</td>
<td>121 puerperal women</td>
<td>30.0 (average)</td>
</tr>
<tr>
<td>Valentine et al</td>
<td>2013</td>
<td>United States</td>
<td>21 puerperal women (donors)</td>
<td>31.0 (average)</td>
</tr>
<tr>
<td>Weseler et al</td>
<td>2008</td>
<td>Netherlands</td>
<td>52 pregnant/ puerperal women</td>
<td>31.7 (average)</td>
</tr>
</tbody>
</table>

Abbreviation: NI, Not informed.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Losses (%)</th>
<th>Period in which the women were evaluated</th>
<th>Period in which the milk was evaluated</th>
<th>Period of supplementation of omega-3 fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atalah et al⁵</td>
<td>Clinical trial</td>
<td>70.0</td>
<td>Three times during gestation and once in the second month after delivery</td>
<td>2nd month after childbirth</td>
<td>During pregnancy</td>
</tr>
<tr>
<td>Bergmann et al³⁸</td>
<td>Randomized double blind clinical trial</td>
<td>45.8</td>
<td>21st and 37th weeks of gestation, at delivery, and 1 and 3 months after delivery</td>
<td>3rd month after childbirth</td>
<td>21st to 37th week, continuation was optional</td>
</tr>
<tr>
<td>Boris et al²⁷</td>
<td>Randomized clinical trial</td>
<td>18.2</td>
<td>30th gestational week and the 1st month after delivery</td>
<td>4th, 16th and 30th days after childbirth</td>
<td>From the 30th gestational week until delivery (group 1) or until the 30th day after delivery</td>
</tr>
<tr>
<td>Bortolozo et al²</td>
<td>Randomized controlled clinical trial</td>
<td>25.0</td>
<td>Last trimester of pregnancy until the 3rd month of lactation</td>
<td>30th, 60th, 90th days after childbirth</td>
<td>Last trimester of pregnancy (baseline) until the 3rd month of lactation</td>
</tr>
<tr>
<td>Dunstan et al²⁰</td>
<td>Randomized double blind clinical trial</td>
<td>25.0</td>
<td>3rd and 6th days, and 6th month after childbirth</td>
<td>3rd and 6th days, and 6th month after childbirth</td>
<td>20th week of gestation until delivery</td>
</tr>
<tr>
<td>Fidler et al¹⁷</td>
<td>Randomized clinical trial</td>
<td>0.0</td>
<td>From the 4th week until the 6th after delivery</td>
<td>In the 4th week after delivery (before starting supplementation), at the 6th week after delivery (after supplementation), and at 6, 12, 24, 36 and 48 hours after intake of the supplement</td>
<td>From 4 to 6 weeks after delivery (14 days)</td>
</tr>
<tr>
<td>Francois et al³⁶</td>
<td>Clinical trial</td>
<td>22.0</td>
<td>10 weeks: 2 weeks of washout* at baseline (to stabilize the omega-6 and 3 intakes); 4 weeks of linseed oil supplementation and 4 weeks after supplementation</td>
<td>1 sample at baseline, 1 sample after washout* (2 weeks after the start of study), 4 samples at weekly intervals during 4 weeks of supplementation, and 4 samples at weekly intervals during the post-supplementation period (4 weeks).</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Gaete and Atalah¹</td>
<td>Cohort</td>
<td>7.69</td>
<td>From entry into the study until the 2nd week after food education</td>
<td>2 weeks after food education</td>
<td>Food education on the day of study entry</td>
</tr>
<tr>
<td>Gaete et al³¹</td>
<td>Randomized clinical trial</td>
<td>17.2</td>
<td>From the study entry to the 15th day after intervention</td>
<td>15 days after intervention</td>
<td>15 days</td>
</tr>
<tr>
<td>van Goor et al³⁹</td>
<td>Randomized double blind clinical trial</td>
<td>51.6</td>
<td>Registration day up to 12 weeks after delivery</td>
<td>2nd to 12th weeks after delivery</td>
<td>17th week of gestation until the 12th week after childbirth</td>
</tr>
<tr>
<td>Hawkes et al⁴⁰</td>
<td>Randomized double blind clinical trial</td>
<td>31.7</td>
<td>3rd day after birth until the end of the 12th week after delivery</td>
<td>In the 4th week after delivery</td>
<td>12 weeks</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Losses (%)</th>
<th>Period in which the women were evaluated</th>
<th>Period in which the milk was evaluated</th>
<th>Period of supplementation of omega-3 fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imhoff-Kunsch et al13</td>
<td>Randomized double blind clinical trial</td>
<td>11.0</td>
<td>Gestation (18th to 22nd weeks) until 1 month after delivery</td>
<td>1 month after birth</td>
<td>From the 18th to the 22nd gestational week until delivery</td>
</tr>
<tr>
<td>Jensen et al18</td>
<td>Clinical trial</td>
<td>7.7</td>
<td>2nd to 8th weeks after delivery</td>
<td>At the 2nd, 5th and 8th weeks after delivery</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Marc et al32</td>
<td>Clinical trial</td>
<td>25.0</td>
<td>1 postnatal week (between 3 and 7 days) before starting DHA supplementation and at follow-up at 15 days (3 weeks) and 49 days (7 weeks)</td>
<td>First postnatal week (between 3rd and 7th days) before starting supplementation and at follow-up on days 15 and 49</td>
<td>1 week after delivery until term (36 weeks) - > 8–12 weeks of supplementation</td>
</tr>
<tr>
<td>Olafsdottir et al41</td>
<td>Randomized clinical trial</td>
<td>48.0</td>
<td>2nd and 4th months after delivery</td>
<td>2nd and 4th months after delivery</td>
<td>Registration day up to 4 months after delivery</td>
</tr>
<tr>
<td>Patin et al35</td>
<td>Clinical trial</td>
<td>NI</td>
<td>0, 15 and 30 days after delivery</td>
<td>0, 15 and 30 days after delivery</td>
<td>1st and 15th days after delivery</td>
</tr>
<tr>
<td>Ribeiro et al30</td>
<td>Randomized clinical trial</td>
<td>78.4</td>
<td>30th gestational week up to 15 days after delivery</td>
<td>15th day after delivery</td>
<td>15 days (from the 30th gestational week)</td>
</tr>
<tr>
<td>Sherry et al42</td>
<td>Clinical trial</td>
<td>7.9</td>
<td>From enrollment (4th to 6th weeks after delivery) up to 6 weeks after supplementation</td>
<td>Baseline and 6th week athersupplementation</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Smit et al37</td>
<td>Clinical trial</td>
<td>11.0</td>
<td>For one week</td>
<td>Baseline shortly after ingestion of the supplement. On day 1 and day 7 after the intake of the supplement</td>
<td>1 week</td>
</tr>
<tr>
<td>Smithers et al43</td>
<td>Randomized double blind clinical trial</td>
<td>19.0</td>
<td>During all hospitalization of the pre-term newborn</td>
<td>At intervals of 2 weeks during the hospitalization of the newborn</td>
<td>From study entry (delivery < 33 weeks) until the expected date of delivery</td>
</tr>
<tr>
<td>Valentine et al44</td>
<td>Randomized clinical trial</td>
<td>38.0</td>
<td>3 days before supplementation until 12 weeks post supplementation</td>
<td>0, 7th, 14th, 21st, 28th and 84th days after the supplementation</td>
<td>During all the time they donated milk to the milk bank (from 7–90 days)</td>
</tr>
<tr>
<td>Weseler et al45</td>
<td>Randomized double blind clinical trial</td>
<td>34.6</td>
<td>Pregnancy (36 weeks) up to the 11th week after delivery</td>
<td>3rd, 5th and 11th weeks after delivery</td>
<td>Gestation (36th week) up to 11th week postpartum</td>
</tr>
</tbody>
</table>

Abbreviation: NI, not informed.

Note: “Washout: time necessary for the concentration of a medicinal product to be negligible after cessation of therapy.”
Table 3 Characteristics of the selected studies on the profile of fatty acids in breast milk with omega-3 sources supplementation, 2000–2015

<table>
<thead>
<tr>
<th>Authors</th>
<th>Type of supplement/food used as source of omega-3</th>
<th>Amount offered</th>
<th>Placebo/control</th>
<th>Method used to evaluate omega-3 intake</th>
<th>Method to evaluate the amount of omega-3 present in HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atalah et al<sup>5</sup></td>
<td>Milk drink made from powdered milk and hydrolyzed cereals enriched with microencapsulated vitamins, minerals and omega-3 fatty acids</td>
<td>60 mg DHA + 14 mg EPA in 200 mL (2 kg/month)</td>
<td>Powdered milk</td>
<td>Food survey</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Bergmann et al<sup>38</sup></td>
<td>Supplement based on acidified and flavored milk</td>
<td>Group 1: Basic supplement plus 4.5 g FOS Group 2: Basic supplement with FOS + 200 mg of DHA</td>
<td>Basic supplement enriched with vitamins and minerals</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Boris et al<sup>27</sup></td>
<td>Fish oil</td>
<td>900 mg DHA + 1300 mg EPA/day</td>
<td>Olive oil</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Bortolozo et al<sup>2</sup></td>
<td>Fish oil</td>
<td>315 mg DHA + 80 mg EPA/day</td>
<td>Maize starch</td>
<td>24h reminder on alternate days of the week, including a weekend day</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Dunstan et al<sup>20</sup></td>
<td>Fish oil</td>
<td>2200 mg DHA + 1100 mg EPA/day</td>
<td>Olive oil</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Fidler et al<sup>17</sup></td>
<td>Oil rich in DHA (DHASCO)<sup>1</sup></td>
<td>200 mg DHA / day</td>
<td>Mixture of soybean and corn oils</td>
<td>7-day food record</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Francois et al<sup>36</sup></td>
<td>Linseed oil</td>
<td>10.7 g ALA</td>
<td>NI</td>
<td>Food survey</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Gaete and Atalah<sup>1</sup></td>
<td>Food education</td>
<td></td>
<td>NI</td>
<td>Food survey</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Gaete et al<sup>31</sup></td>
<td>Canned fish(horse mackerel)</td>
<td>160 g fish 2 times a week</td>
<td>Regular food</td>
<td>Food survey</td>
<td>Chromatography</td>
</tr>
<tr>
<td>van Goor et al<sup>29</sup></td>
<td>DHA + ARA capsules, DHA capsules</td>
<td>Group 1 = 220 mg DHA + 36 mg EPA + 220 mg ARA + 7 mg ALA + 46 LA Group 2 = 220 mg DHA, 34 mg EPA + 15 mg ARA + 32 mg ALA + 274 LA</td>
<td>Soybean oil</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Hawkes et al<sup>40</sup></td>
<td>Tuna oil</td>
<td>Group 1 = 300 mg DHA + 70 mg EPA/day Group 2 = 600 mg DHA + 140 mg EPA/day</td>
<td>Sunflower seed oil</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Imhoff-Kunsch et al<sup>13</sup></td>
<td>Seaweed oil</td>
<td>400 mg DHA</td>
<td>Olive oil</td>
<td>Food survey</td>
<td>Chromatography</td>
</tr>
</tbody>
</table>
fatty acids in the form of linoleic acids (LAs) and \(\alpha \)-linolenic acids (ALAs) are activated in the forms known as keto-acyl-CoA, and then used for the conversion of long chain polyunsaturated fatty acids and other polyunsaturated products, such as those derived from the series of desaturation and elongation reactions that are particularly active in the liver and, to a lesser extent, in other tissues.\(^8\)

Linoleic and ALA fatty acids need to be ingested through food, since the human body does not have enzymes to synthesize them. Some vegetables synthesize them and are, therefore, an abundant source of these fatty acids, as well as the products derived from these vegetables. Omega-3 fatty acids (DHA and EPA) can be synthesized by the human body to a certain level, albeit a very limited one. The consumption of omega-3 sources

Table 3 (Continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Type of supplement/food used as source of omega-3</th>
<th>Amount offered</th>
<th>Placebo/control</th>
<th>Method used to evaluate omega-3 intake</th>
<th>Method to evaluate the amount of omega-3 present in HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jensen et al(^{18})</td>
<td>Group 1: supplement made from algae with a high content of DHA Group 2: eggs with a high content of DHA Group 3: fish oil</td>
<td>Group 1: 230 mg DHA/day Group 2: 170 mg DHA/day Group 3: 260 mg DHA/day</td>
<td>Eggs</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Marc et al(^{32})</td>
<td>Oil rich in DHA (DHASCO)*</td>
<td>1200 mg DHA/day</td>
<td>No intervention</td>
<td>Food survey</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Olafsdottir et al(^{41})</td>
<td>Cod liver oil</td>
<td>1107 mg DHA + 783 mg EPA/day</td>
<td>No intervention</td>
<td>24h reminder + additional questions about fish consumption</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Patin et al(^{35})</td>
<td>Fried sardines</td>
<td>4 kg of sardines (2 kg on day 0 and 2 kg on the 15th day)</td>
<td>The study had no control group</td>
<td>24h reminder</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Authors</td>
<td>Type of supplement/food used as source of omega-3</td>
<td>Value offered</td>
<td>Placebo/control</td>
<td>Method used to evaluate omega-3 intake</td>
<td>Method to evaluate the amount of omega-3 present in HM</td>
</tr>
<tr>
<td>Ribeiro et al(^{30})</td>
<td>Fish oil</td>
<td>0.72 g (\omega_3)/day</td>
<td>Primrose oil</td>
<td>24h reminder</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Sherry et al(^{42})</td>
<td>Oil rich in DHA</td>
<td>Group 1: 200 mg DHA/day Group 2: 400 mg DHA/day</td>
<td>NI</td>
<td>Food survey and 3-day food records</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Smit et al(^{37})</td>
<td>Oil rich in ARA and DHA</td>
<td>Group 1: 300 mg ARA/day Group 2: 300 mg ARA + 110 mg EPA and 400 mg DHA/day</td>
<td>No intervention</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Smithers et al(^{41})</td>
<td>Tuna oil</td>
<td>900 mg DHA + 195 mg EPA + 54 mg ARA/day</td>
<td>Soybean oil</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Valentine et al(^{44})</td>
<td>Seaweed oil</td>
<td>1000 mg DHA</td>
<td>Soybean oil</td>
<td>3-day food records</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Weseler et al(^{45})</td>
<td>Milk drink made from powdered milk enriched with LCPUFAs</td>
<td>Group 1: 200 mg ARA/day Group 2: 400 mg ARA/day Group 3: 320 mg DHA + 80 mg EPA</td>
<td>Powdered milk</td>
<td>NI</td>
<td>Chromatography</td>
</tr>
</tbody>
</table>

Abbreviation: ALA, \(\alpha \)-linolenic acid; ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FOS, fructooligosaccharide; HM, human milk; LA, linoleic acid; LCPUFAs, long chain polyunsaturated fatty acids; NI, Not informed.

*DHASCO is an oil derived from a single-celled alga, mainly containing DHA, myristic, palmitic and oleic acids.
through diet can be done by ingesting fish or fish oils, and foods enriched or fortified with these important fatty acids. Although ALA in humans is converted to EPA and DHA, the exact percentage of this conversion is unknown, but it is estimated to be low (5% EPA and 0.5% DHA). Due to their enzymatic immaturity, children and especially neonates cannot convert all the DHA required for their development from ALA. Therefore, feeding in the gestational period is of great importance as it determines the type of fatty acid that will accumulate in the fetal tissue. The essential fatty acids are transferred through the placenta, and in the third gestational trimester are deposited in the brain and retina of the fetus. It should be noted that the fetus withdraws a total of 50 to 75mg of polyunsaturated fatty acids from the mother, most of them being DHA.

Numerous studies have been conducted to evaluate the effects of the supplementation of omega-3 and its metabolites in pregnancy and puerperium on the composition of HM. This is due to the synthesis of DHA probably occurring minimally in the mammary gland as well as due to the role that this polyunsaturated fatty acid plays on visual acuity, cognition and in the formation of the nervous tissue of the newborn.

Although supplementation appears to be the most reliable medium for increasing omega-3 levels in HM, there are numerous differences among the studies evaluated in relation to the following parameters: sample size, study design, timing of omega-3 supplementation (gestation and/or lactation), type of supplementation (fish oil, in natura fish consumption), and amount and type of omega-3 offered (EPA and/or DHA).

Regarding the diversity of the countries where the studies selected for this systematic review were performed, it is worth noting that the consumption of omega-3 rich foods in Western countries is well below that of other countries. In the United States, the intake of omega-3 and its metabolites (DHA and EPA) was estimated at 1.6 and 0.1 g/day respectively, and the dietary ratio between omega-6 and omega-3 was 9.8:1. A study with Canadian pregnant women showed that the average daily intake of omega-3 and DHA was 1.45 and 0.082 g/day respectively. Populations living in coastal countries, such as Japan and Norway, where fish are widely consumed, have a higher dietary intake of omega-3 (>1 g/day), and consequently, high concentrations of DHA in their breast milk. Although there is no official dietary recommendation for EPA and DHA in the US, several expert groups suggest a DHA intake of at least 200 mg/day, which may reach 1,000 mg DHA/day for pregnant and lactating women, and 1.4–2.7 g of omega-3, and suggest the omega-6/omega-3 ratio of 2–5:1.

Corroborating the above recommendations, the consensus published by Koletzko et al states that an average intake of at least 200 mg of DHA per day is advisable; it also states that consumption of up to 1 g of DHA or 2 to 7 g of omega-3 per day is safe. This amount can be achieved by consuming one to two servings of fish per week, including fatty fish such as herring, mackerel and salmon. However, it is known that the consumption of fish can contribute significantly to the exposure to contaminants such as methylmercury, which is particularly toxic to the developing brain and possibly harmful to infant growth. To decrease the amounts of methylmercury in the body, one should reduce the intake of contaminated foods during the preggestational and gestational periods. The fish with the highest levels of methylmercury are predatory fish such as marlin, pike, swordfish and shark. However, after an extensive literature review, the consensus points out that the beneficial effects of regular consumption of fish sources of DHA during pregnancy appear to overcome the potential drawbacks of the increased intake of contaminants.

Regarding the period of supplementation, the selected studies presented different time periods (pregnant and/or nursing) when omega-3 supplementation was performed and measured, which may partially justify the differences in the results we found. On this issue, in their randomized clinical trial, Boris et al evaluated two hypotheses, namely: 1) whether omega-3 supplementation during pregnancy increased omega-3 levels at the beginning of breastfeeding; and 2) whether the continuation of supplementation after delivery was necessary to sustain the long-term increase in omega-3 levels. There was a marked drop in omega-3 levels in the group that stopped supplementation during the puerperium. Such a decrease in the concentration of DHA in breast milk as lactation progresses is corroborated by numerous studies. On the other hand, the group that received fish oil during gestation and lactation showed levels of omega-3 three times higher, and double the levels of DHA. It is worth mentioning that polyunsaturated fatty acids are deposited in the brain during the last gestational trimester, and that this process continues after delivery. Furthermore, the neurological development continues during the first years of life. The results found by Ribeiro et al also demonstrated that supplementation with fish oil limited to pregnancy was not as effective as supplementation during pregnancy and lactation. Therefore, supplementation during pregnancy and lactation is recommended by numerous studies.

Important issues to take into account in these studies are the type of omega-3 source and the quantity that was supplied. It was observed that most of the selected studies used fish oil to increase the consumption of omega-3; however, some studies have used the supply of fresh food, fortified drinks and food education techniques. The use of fish oil has benefits, but it can lead to low compliance due to its adverse effects, such as fish flavor eruption, digestive discomfort and night sweats. The randomized double blind clinical trial conducted by Dunstan et al aimed to evaluate the effects of fish oil supplementation during pregnancy on the composition of HM and on the development of the infant in the first year of life. The concentration of fatty acids in the milk was analyzed on the third day, sixth week and sixth month after delivery. It was observed that women who received fish oil had a higher concentration of EPA and DHA in the milk on the third day and the sixth week after delivery.

Regarding the consumption of fish, the study by Henderson et al demonstrated that ingesting 100–120 g of sardines 2 to 3 times a week resulted in increased levels of fatty acids without the need for fish oil. Harris et al disagreed.
Table 4 Controlled confounding factors, eligibility and exclusion criteria and main results found between supplementation of omega-3 sources on the fatty acid composition of human milk, 2000–2015

<table>
<thead>
<tr>
<th>Authors</th>
<th>Estimator</th>
<th>Confounding factors controlled in the analysis</th>
<th>Eligibility criteria</th>
<th>Exclusion criteria</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atalah et al5</td>
<td>Median</td>
<td>Age, schooling, parity, initial weight, height, GA at baseline</td>
<td>GA < 14 weeks, age ≥18 years, primiparous, absence of chronic pathologies</td>
<td>NI</td>
<td>50% increase in omega-3 concentration in total fatty acids in HM, a non-statistically significant value ($p = 0.06$), probably due to the small sample size and insufficient adhesion level</td>
</tr>
<tr>
<td>Bergmann et al18</td>
<td>Average</td>
<td>Age, pregestational BMI, gestational weight gain, gestational age, parity type, parity, marital status, nationality, work, education, female gender, Apgar ≤ 7 in 10 minutes, umbilical cord pH ≤ 7.2, weight, length and head circumference</td>
<td>Pregnant, caucasian, healthy women, aged > 18 years and intending to breastfeed for at least 3 months</td>
<td>Severe illness, age < 18 years, non-Caucasian, increased risk of preterm or multiple pregnancy, allergy to cow milk protein, lactose intolerance, diabetes, smoking, alcohol consumption, participation in another study, consumption of other supplements, prematurity malformations, hospitalization > 1 week</td>
<td>The percentage of DHA in the breast milk was twice as high in the DHA-FOS group (0.50%) ($p < 0.001$), and the ratio of ARA to DHA in the DHA-FOS group compared with the other two groups was significantly reduced from 2.1 ± 0.76 to 1.0 ± 0.43 ($p < 0.001$). The Authors concluded that 200mg/day of DHA from mid-pregnancy to lactation appears to be adequate to improve the state of DHA in mothers and infants</td>
</tr>
<tr>
<td>Boris et al27</td>
<td>Average</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>Comparing the two intervention groups, it was observed that women who received fish oil during gestation and lactation had increased levels of omega-3 compared with those who received until gestation only</td>
</tr>
<tr>
<td>Bortolozo et al2</td>
<td>Average</td>
<td>Age, schooling and income</td>
<td>Healthy, pregnant women aged 18–38 years, in the last trimester of pregnancy, non-smokers, no high-risk pregnancies, and adequate dietary patterns</td>
<td>NI</td>
<td>The milk of the mothers of the intervention group presented high levels of DHA and EPA at the 30th and 60th days, demonstrating that higher consumption of omega-3 could influence their concentration in HM, and there was no change between omega-3 and omega-6</td>
</tr>
<tr>
<td>Dunstan et al20</td>
<td>Correlation coefficient (R^2)</td>
<td>Parity, pre-gestational BMI, age and maternal allergy (allergic rhinitis or asthma)</td>
<td>Pregnant women between the 16th to the 20th gestational weeks and who had delivered after the 36th gestational week, with presence of allergic rhinitis, asthma or positive test in the Prick test</td>
<td>Pregnant smokers, with health problems and with fish consumption above two meals per week</td>
<td>In the intervention group, colostrum presented a high proportion of DHA and EPA when compared with the control group ($p < 0.001$). During the three moments, the drop was higher in the intervention group when compared with the control group ($p < 0.001$). However, the amount of DHA and EPA remained higher in the intervention group at 6 weeks postpartum when compared with the control group ($p < 0.001$). At 6 months, no differences were found between groups</td>
</tr>
<tr>
<td>Fidler et al17</td>
<td>Correlation coefficient (R^2)</td>
<td>Maternal age, height, weight (day 0), weight (day 14), BMI (day 14), milk secretion (mL/day), TL in HM (g/100 mL)</td>
<td>Healthy lactating mother, with omnivorous diet, with single, full-term, healthy newborns</td>
<td>NI</td>
<td>At baseline, there was no difference in fatty acid composition between the intervention and the placebo group. After two weeks of supplementation with 200mg of DHA/day, the milk from the intervention group contained a significantly higher percentage of DHA relative to milk from the placebo group ($p = 0.003$), a content almost 1.8 times higher of DHA. There was no significant difference in the content of any other fatty acids at any time point after supplementation.</td>
</tr>
</tbody>
</table>

(Continues)
Table 4 (Continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Estimator</th>
<th>Confounding factors controlled in the analysis</th>
<th>Eligibility criteria</th>
<th>Exclusion criteria</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francos et al.</td>
<td>Average</td>
<td>Healthy women aged 28–39 years</td>
<td>NI</td>
<td>NI</td>
<td>The omega-3 content in HM increased significantly over time from 1.0% of total lipids (TL) at baseline to 6.8% at week 1, and then returned to baseline (≤1.5% of TL) after 4 weeks. After food education, the consumption of fish and DHA supplements increased, leading to a significant increase in the DHA and ARA content of breast milk. After supplementation, an increase in the amount of DHA and ARA was observed. DHA consumption in the intervention group increased significantly from 5.0 to 37.5 mg/day across all weeks. DHA supplementation increased plasma DHA concentrations in lactating women and in breast milk, resulting in a higher plasma concentration of DHA and ARA in breast milk compared to baseline. The concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.01).</td>
</tr>
<tr>
<td>Gaete and Atalah</td>
<td>Median</td>
<td>Weight, height, BMI</td>
<td>GA > 37 weeks and exclusive breastfeeding</td>
<td>Women with diabetes, altered lipid metabolism and alcohol and drug dependence</td>
<td>The concentration of DHA in breast milk in the intervention group was higher than for the placebo group (p < 0.001). The dietary DHA supplement provided during lactation increased the concentration of DHA in breast milk, the concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.001).</td>
</tr>
<tr>
<td>Gaete et al.</td>
<td>Median</td>
<td>Weight, height, BMI</td>
<td>GA > 37 weeks and exclusive breastfeeding</td>
<td>Women with diabetes, altered lipid metabolism and alcohol and drug dependence</td>
<td>The concentration of DHA in breast milk in the intervention group was higher than for the placebo group (p < 0.001). The dietary DHA supplement provided during lactation increased the concentration of DHA in breast milk, the concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.001).</td>
</tr>
<tr>
<td>van Goor et al.</td>
<td>Median</td>
<td>Weight, height, BMI</td>
<td>GA > 37 weeks and exclusive breastfeeding</td>
<td>Women with low risk, first or second trimester, BMI > 30, and with gestational diabetes</td>
<td>The concentration of DHA in breast milk in the intervention group was higher than for the placebo group (p < 0.001). The dietary DHA supplement provided during lactation increased the concentration of DHA in breast milk, the concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.001).</td>
</tr>
<tr>
<td>Hawkes et al.</td>
<td>Average</td>
<td>Material age, gestational weight, GA, BMI, parity, age of the newborn</td>
<td>Healthy women, age > 18 years, single gestation, BMI > 30, and with gestational diabetes</td>
<td>Vegetarian/vegan women, women with diabetes mellitus, inflammatory diseases, use of anti-inflammatory drugs or fish oil supplements</td>
<td>The concentration of DHA in breast milk in the intervention group was higher than for the placebo group (p < 0.001). The dietary DHA supplement provided during lactation increased the concentration of DHA in breast milk, the concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.001).</td>
</tr>
<tr>
<td>Jensen et al.</td>
<td>Average</td>
<td>Maternal age at birth, BMI, parity, weight, height, GA, smoking, alcoholic beverages and side effects</td>
<td>Healthy women, age > 18 years, single gestation, BMI > 30, and with gestational diabetes</td>
<td>Healthy women, age > 18 years, single gestation, BMI > 30, and with gestational diabetes</td>
<td>The concentration of DHA in breast milk in the intervention group was higher than for the placebo group (p < 0.001). The dietary DHA supplement provided during lactation increased the concentration of DHA in breast milk, the concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.001).</td>
</tr>
<tr>
<td>Marc et al.</td>
<td>Average</td>
<td>Age, BMI, parity, school level, work, marital status, use of vitamins, use of fish, and alcohol use</td>
<td>Childbirth with GA > 37 weeks and intending to breastfeed; > 3 fish servings/week, use of omega-3 supplements, fish allergy, and birth weight > 4,000 g</td>
<td>Pregnant women with the intention to exclusively breastfeed</td>
<td>The concentration of DHA in breast milk in the intervention group was higher than for the placebo group (p < 0.001). The dietary DHA supplement provided during lactation increased the concentration of DHA in breast milk, the concentration of DHA in breast milk in the intervention group was higher than in the control group (p < 0.001).</td>
</tr>
</tbody>
</table>

Note: The table above provides a detailed summary of the study by Amaral et al., highlighting the changes in fatty acid content of breast milk with supplementation of omega-3. The table includes authors, study design, eligibility criteria, exclusion criteria, results, and relevant findings. The focus is on the impact of omega-3 supplementation on breast milk composition, with particular emphasis on changes in the omega-3 index (NI) and its metabolites. The table is designed to facilitate a comprehensive overview of the study's methodology and outcomes, allowing for a deeper understanding of the research context and implications.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Estimator</th>
<th>Eligibility criteria</th>
<th>Exclusion criteria</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olafsdottir et al<sup>41</sup></td>
<td>Correlation coefficient (R<sup>2</sup>)</td>
<td>Irish or having lived in the country for at least 15 years, single birth and breastfeeding</td>
<td>NIL</td>
<td>EPA and DHA were significantly different between the groups, being 1.3–2.3 times higher in the milk of the intervention group when compared with the control group, without any negative effect on another fatty acids</td>
</tr>
<tr>
<td>Patin et al<sup>35</sup></td>
<td>Correlation coefficient (R<sup>2</sup>)</td>
<td>Exclusive breastfeeding, no smoking, no allergy/intolerance to sardines, birth weight ≥ 2500 g, GA between 37 and 42 weeks</td>
<td>NIL</td>
<td>Consumption of 300 g of sardines per week increased DHA levels in HM</td>
</tr>
<tr>
<td>Ribeiro et al<sup>30</sup></td>
<td>Average and correlation coefficient (R<sup>2</sup>)</td>
<td>Age between 20–30 years, 30th week of gestation, no use of medication, no intolerance/allergy to fish, no use of dietary supplements with omega-3 and omega-6, and with intention to breastfeed exclusively</td>
<td>NIL</td>
<td>The data confirmed that the omega-3 content in HM, DHA in particular, is influenced by the consumption of omega-3 by the pregnant woman. A positive correlation was found between omega-3 content in the phospholipids of erythrocytes of pregnant women and the content of these fatty acids in breast milk</td>
</tr>
<tr>
<td>Sherry et al<sup>42</sup></td>
<td>Average</td>
<td>Age ≥ 18 years, with full term infants, 4–6 weeks postpartum and who planned to breastfeed for ≥ 6 weeks</td>
<td>NIL</td>
<td>Lactating women consumed ~ 25% of the recommended amount of DHA/day. The data found demonstrated that supplementation significantly increased DHA in HM, as well as decreased the ratio of omega-6/omega-3</td>
</tr>
<tr>
<td>Smit et al<sup>37</sup></td>
<td>Average</td>
<td>Infants between the third and tenth months of breastfeeding</td>
<td>NIL</td>
<td>The administration of 300 mg ARA + 110 mg EPA + 400 mg DHA increased the LCPUFAs content in HM, with no significant result</td>
</tr>
<tr>
<td>Smithers et al<sup>43</sup></td>
<td>Average</td>
<td>GA < 33 weeks</td>
<td>Coagulation disorders, congenital or chromosomal anomalies, and multiple births in which not all live births were eligible</td>
<td>Mothers in the intervention group had 3-fold higher levels of DHA in HM compared with women in the placebo group but also had slightly lower linoleic acid content</td>
</tr>
<tr>
<td>Valentine et al<sup>44</sup></td>
<td>Median</td>
<td>Donor to the human milk bank</td>
<td>Women who did not have enough milk to donate</td>
<td>The DHA content of the milk increased in the group supplemented with DHA capsules (p < 0.05)</td>
</tr>
<tr>
<td>Weseler et al<sup>45</sup></td>
<td>Correlation coefficient (R<sup>2</sup>)</td>
<td>GA (34–35 weeks), intention to breastfeed, pregestational BMI (18–27 kg/m<sup>2</sup>), consumption of fish < 2 x per week, without use of omega-3 supplements, alcohol, cigarette, drugs or supplements</td>
<td>GA < 37 or > 43 weeks, allergy/intolerance to supplements and vegetarian components</td>
<td>It was observed that the concentrations of DHA in HM increased significantly after 2 weeks of supplement intake (320 mg DHA + 80 mg EPA)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GA, gestational age; HM, human milk; LCPUFAs, long chain polyunsaturated fatty acids; NIL, not informed; TL, total lipids.
with this, and have observed that in order to increase 0.5 to 1 g of DHA in breast milk, it is necessary to consume 350–750 g of 1% fat or 75–150 g of 10% fish fat. In the study by Patin et al., it was observed that the levels of DHA in HM increased with the ingestion of 300 g of sardines per week, with 5% fat, without the need to use fish oil supplementation. This study recommended the consumption of fish two to three times per week during gestation.

Gaete and Atalah conducted a prospective study with 26 pregnant women, which consisted of an educational feeding strategy to recommend individual consumption of different preparations based on marine foods. A guide with information on the importance of maternal lactation to the newborn, and on the importance of fish consumption by the mother to increase DHA levels was also distributed. The strategy of food education is considered an important intervention to raise awareness about the need for fish consumption during the gestational and puerperal period.

The study by Atalah et al. aimed to evaluate the effects of the introduction of omega-3 fortified milk beverages (DHA and EPA) during gestation on the composition of HM and red blood cells. One-hundred and seventy-five women from the intervention group and 177 from the control group were evaluated in the clinical trial. The pregnant women were evaluated at three moments of the pregnancy and once after delivery to evaluate the consumption near the date of the interview. The evaluation of milk composition was performed in only 16 women, and a 50% increase in omega-3 in breast milk was observed. However, there was no statistical difference between the evaluated groups in relation to the amount of EPA and DHA, probably due to the small sample size.

Regarding the type of omega-3 offered, seven studies offered DHA and EPA, seven offered DHA only, and three offered DHA, arachidonic acid (ARA) and EPA. It was observed that the amount of DHA was always higher than that of EPA, probably because of its important role on the nervous system, cognition and vision. It is worth noting that there is no consensus regarding the optimal levels of DHA consumption at different stages of life. However, most technical groups recommend around 200 to 500 mg/day in the adult population, and, during gestation, it is recommended to consume fish between two to three times per week.

There are numerous factors that contribute to the variability of EPA and DHA content in breast milk, such as lactation stage, gestational age, and maternal nutritional status. What is verified is that certain selected studies did not control the analyses for important confounding factors, such as food consumption. Therefore, estimates of association may be compromised by the fact that certain studies did not quantify follow-up losses, but also because they did not control important confounding factors.

All selected articles showed the importance of supplementation of omega-3 in different forms (capsules, dairy drinks, strategy for feeding education, consumption of fish) on the nutritional composition of HM in the gestational and/ or puerperal periods. However, four studies did not reach statistical significance. This can be partially explained by the sample size, which can reduce the strength of the study to elucidate possible associations, possible adhesion reduction in relation to the intake of supplements and the food education practices employed, as well as the follow-up losses, which may cause a decrease in the validity of the results.

Conclusion

Although the studies were disparate in several methodological aspects, the importance of omega-3 supplementation in pregnancy and/or the puerperium, especially DHA, as well as the safety of its supplementation were observed with the data from the studies that composed this systematic review. However, it is of great importance that further studies be conducted to establish the adequate amount of omega-3s and their metabolites during gestation and lactation that will bring benefit to newborns.

References

Are There Changes in the Fatty Acid of Breast Milk with Supplementation of Omega-3? Amaral et al.