Semin Reprod Med 2017; 35(2): 121-129
DOI: 10.1055/s-0037-1599083
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Developmental Origins of Hypothalamic Cells Controlling Reproduction

Matthew Joseph Biehl
1   Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
,
Lori Therese Raetzman
1   Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
09 March 2017 (online)

Abstract

The hypothalamus-pituitary-gonadal (HPG) axis is the most critical modulator of reproductive function. Genetic or environmental insults to the HPG axis during developmental windows can persist into adulthood, and processes such as gonadal hormone synthesis, timing of puberty, and fertility can be affected. At the level of the hypothalamus, multiple regions develop at different times and are under the control of a concert of signaling pathways and transcription factors required for their patterning and maturation. In this review, we highlight factors and pathways involved in specification and ultimate differentiation of neuronal and other cellular subtypes of the hypothalamus contributing to the HPG axis. Specifically, we discuss development of the arcuate and anteroventral periventricular nuclei, as well as forebrain development as it relates to reproductive function. Precise control of kisspeptin and gonadotropin-releasing hormone neuron, as well as tanycyte, development is necessary for understanding and ultimately treating developmental disruptions resulting in infertility.

 
  • References

  • 1 Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3) 1235-1316
  • 2 Elson AE, Simerly RB. Developmental specification of metabolic circuitry. Front Neuroendocrinol 2015; 39: 38-51
  • 3 Ralevski A, Horvath TL. Developmental programming of hypothalamic neuroendocrine systems. Front Neuroendocrinol 2015; 39: 52-58
  • 4 Sasaki F, Iwama Y. Correlation of spatial differences in concentrations of prolactin and growth hormone cells with vascular pattern in the female mouse adenohypophysis. Endocrinology 1988; 122 (4) 1622-1630
  • 5 Renaud LP. Tuberoinfundibular neurons in the basomedial hypothalamus of the rat: electrophysiological evidence for axon collaterals to hypothalamic and extrahypothalamic areas. Brain Res 1976; 105 (1) 59-72
  • 6 Seoane JR, Baile CA. Feeding and temperature changes in sheep following injections of barbiturates, Ca-++, or Mg-++ into the lateral, third, or fourth ventricle or cerebral aqueduct. J Dairy Sci 1975; 58 (4) 515-520
  • 7 Ugrumov MV, Ivanova IP, Mitskevich MS. Permeability of the blood-brain barrier in the median eminence during the perinatal period in rats. Cell Tissue Res 1983; 230 (3) 649-660
  • 8 Hoffman WE, Phillips MI. Regional study of cerebral ventricle sensitive sites to angiotensin II. Brain Res 1976; 110 (2) 313-330
  • 9 Navarro VM, Castellano JM, Fernández-Fernández R , et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 2004; 145 (10) 4565-4574
  • 10 Gottsch ML, Cunningham MJ, Smith JT , et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004; 145 (9) 4073-4077
  • 11 Messager S, Chatzidaki EE, Ma D , et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 2005; 102 (5) 1761-1766
  • 12 Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005; 146 (9) 3686-3692
  • 13 Seminara SB, Messager S, Chatzidaki EE , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
  • 14 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003; 100 (19) 10972-10976
  • 15 Funes S, Hedrick JA, Vassileva G , et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 2003; 312 (4) 1357-1363
  • 16 Yeo SH, Kyle V, Morris PG , et al. Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse. J Neuroendocrinol 2016; 28 (11) DOI: 10.1111/jne.12435.
  • 17 Desroziers E, Droguerre M, Bentsen AH , et al. Embryonic development of kisspeptin neurones in rat. J Neuroendocrinol 2012; 24 (10) 1284-1295
  • 18 d'Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH. Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 2008; 149 (8) 3926-3932
  • 19 Kumar D, Periasamy V, Freese M, Voigt A, Boehm U. In utero development of kisspeptin/GnRH neural circuitry in male mice. Endocrinology 2015; 156 (9) 3084-3090
  • 20 Smith JT, Dungan HM, Stoll EA , et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 2005; 146 (7) 2976-2984
  • 21 Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 2009; 29 (38) 11859-11866
  • 22 Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda K. Kisspeptin and GnRH pulse generation. Adv Exp Med Biol 2013; 784: 297-323
  • 23 Qiu J, Nestor CC, Zhang C , et al. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. eLife 2016; 5: 165-171
  • 24 Goodman RL, Lehman MN, Smith JT , et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 2007; 148 (12) 5752-5760
  • 25 Young J, Bouligand J, Francou B , et al. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J Clin Endocrinol Metab 2010; 95 (5) 2287-2295
  • 26 Topaloglu AK, Reimann F, Guclu M , et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 2009; 41 (3) 354-358
  • 27 Simerly RB. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Brain Res Mol Brain Res 1989; 6 (4) 297-310
  • 28 Davis EC, Shryne JE, Gorski RA. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 1996; 63 (2) 142-148
  • 29 Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology 2009; 150 (8) 3664-3671
  • 30 Mayer C, Acosta-Martinez M, Dubois SL , et al. Timing and completion of puberty in female mice depend on estrogen receptor alpha-signaling in kisspeptin neurons. Proc Natl Acad Sci U S A 2010; 107 (52) 22693-22698
  • 31 Yeo SH, Herbison AE. Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology 2011; 152 (6) 2387-2399
  • 32 Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 2006; 147 (12) 5817-5825
  • 33 Orikasa C, Kondo Y, Hayashi S, McEwen BS, Sakuma Y. Sexually dimorphic expression of estrogen receptor beta in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge. Proc Natl Acad Sci U S A 2002; 99 (5) 3306-3311
  • 34 Kauffman AS, Gottsch ML, Roa J , et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 2007; 148 (4) 1774-1783
  • 35 Yip SH, Boehm U, Herbison AE, Campbell RE. Conditional viral tract tracing delineates the projections of the distinct kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse. Endocrinology 2015; 156 (7) 2582-2594
  • 36 Dubois SL, Acosta-Martínez M, DeJoseph MR , et al. Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 2015; 156 (3) 1111-1120
  • 37 Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev 2010; 20 (4) 327-348
  • 38 Szabo N, Zhao T , et al. Role of neuroepithelial sonic hedgehog in hypothalamic patterning. J Neurosci 2009; 29 (21) 6989-7002
  • 39 Potok MA, Cha KB, Hunt A , et al. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn 2008; 237 (4) 1006-1020
  • 40 Takuma N, Sheng HZ, Furuta Y , et al. Formation of Rathke's pouch requires dual induction from the diencephalon. Development 1998; 125 (23) 4835-4840
  • 41 McCarthy M, Turnbull DH, Walsh CA, Fishell G. Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci 2001; 21 (17) 6772-6781
  • 42 Dale JK, Vesque C, Lints TJ , et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 1997; 90 (2) 257-269
  • 43 Rohr KB, Barth KA, Varga ZM, Wilson SW. The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron 2001; 29 (2) 341-351
  • 44 Shimogori T, Lee DA, Miranda-Angulo A , et al. A genomic atlas of mouse hypothalamic development. Nat Neurosci 2010; 13 (6) 767-775
  • 45 Ikeda Y, Luo X, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 1995; 9 (4) 478-486
  • 46 Zhao T, Zhou X, Szabó N, Leitges M, Alvarez-Bolado G. Foxb1-driven Cre expression in somites and the neuroepithelium of diencephalon, brainstem, and spinal cord. Genesis 2007; 45 (12) 781-787
  • 47 Altman J, Bayer SA. Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol 1978; 182 (4, Pt 2): 945-971
  • 48 Ishii Y, Bouret SG. Embryonic birthdate of hypothalamic leptin-activated neurons in mice. Endocrinology 2012; 153 (8) 3657-3667
  • 49 Alvarez-Bolado G, Paul FA, Blaess S. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 2012; 7 (1) 4
  • 50 Dvorák K, Feit J. Testing of the course of neurogenesis and gliogenesis in the germinative zones of the CNS of embryonal and early postnatal rats by means of the gel reaction for the histochemical demonstration of the thiamine-pyrophosphatase. Histochemical and autoradiographical study. Acta Histochem 1978; 63 (1) 89-104
  • 51 Acampora D, Postiglione MP, Avantaggiato V , et al. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 1999; 13 (21) 2787-2800
  • 52 Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development 2001; 128 (13) 2497-2508
  • 53 Lavado A, Lagutin OV, Oliver G. Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 2008; 135 (3) 441-450
  • 54 Yee CL, Wang Y, Anderson S, Ekker M, Rubenstein JLR. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J Comp Neurol 2009; 517 (1) 37-50
  • 55 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (4) 663-676
  • 56 Kelberman D, de Castro SC, Huang S , et al. SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J Clin Endocrinol Metab 2008; 93 (5) 1865-1873
  • 57 Mead TJ, Wang Q, Bhattaram P , et al. A far-upstream (-70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Res 2013; 41 (8) 4459-4469
  • 58 Casarosa S, Fode C, Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 1999; 126 (3) 525-534
  • 59 Wang X, Chu LT, He J, Emelyanov A, Korzh V, Gong Z. A novel zebrafish bHLH gene, neurogenin3, is expressed in the hypothalamus. Gene 2001; 275 (1) 47-55
  • 60 D'Amico LA, Boujard D, Coumailleau P. The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells. PLoS One 2013; 8 (6) e66487
  • 61 Yamamoto S, Nagao M, Sugimori M , et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 2001; 21 (24) 9814-9823
  • 62 Lee JE, Wu SF, Goering LM, Dorsky RI. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 2006; 133 (22) 4451-4461
  • 63 Biehl MJ, Raetzman LT. Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015; 406 (2) 235-246
  • 64 Nishizuka M, Sumida H, Kano Y, Arai Y. Formation of neurons in the sexually dimorphic anteroventral periventricular nucleus of the preoptic area of the rat: effects of prenatal treatment with testosterone propionate. J Neuroendocrinol 1993; 5 (5) 569-573
  • 65 Knoll JG, Clay CM, Bouma GJ , et al. Developmental profile and sexually dimorphic expression of kiss1 and kiss1r in the fetal mouse brain. Front Endocrinol (Lausanne) 2013; 4: 140
  • 66 Kumar D, Boehm U. Conditional genetic transsynaptic tracing in the embryonic mouse brain. J Vis Exp 2014; 94 (94) DOI: 10.3791/52487.
  • 67 Kumar D, Freese M, Drexler D, Hermans-Borgmeyer I, Marquardt A, Boehm U. Murine arcuate nucleus kisspeptin neurons communicate with GnRH neurons in utero. J Neurosci 2014; 34 (10) 3756-3766
  • 68 Kumar D, Candlish M, Periasamy V, Avcu N, Mayer C, Boehm U. Specialized subpopulations of kisspeptin neurons communicate with GnRH neurons in female mice. Endocrinology 2015; 156 (1) 32-38
  • 69 Atkin SD, Owen BM, Bookout AL , et al. Nuclear receptor LRH-1 induces the reproductive neuropeptide kisspeptin in the hypothalamus. Mol Endocrinol 2013; 27 (4) 598-605
  • 70 Aujla PK, Naratadam GT, Xu L, Raetzman LT. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 2013; 140 (17) 3511-3521
  • 71 Padilla SL, Reef D, Zeltser LM. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology 2012; 153 (3) 1219-1231
  • 72 Padilla SL, Carmody JS, Zeltser LM. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med 2010; 16 (4) 403-405
  • 73 Sanz E, Quintana A, Deem JD, Steiner RA, Palmiter RD, McKnight GS. Fertility-regulating Kiss1 neurons arise from hypothalamic POMC-expressing progenitors. J Neurosci 2015; 35 (14) 5549-5556
  • 74 Han SK, Gottsch ML, Lee KJ , et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25 (49) 11349-11356
  • 75 Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006; 26 (25) 6687-6694
  • 76 Semaan SJ, Murray EK, Poling MC, Dhamija S, Forger NG, Kauffman AS. BAX-dependent and BAX-independent regulation of Kiss1 neuron development in mice. Endocrinology 2010; 151 (12) 5807-5817
  • 77 Forger NG, Rosen GJ, Waters EM, Jacob D, Simerly RB, de Vries GJ. Deletion of Bax eliminates sex differences in the mouse forebrain. Proc Natl Acad Sci U S A 2004; 101 (37) 13666-13671
  • 78 Tsukahara S, Kakeyama M, Toyofuku Y. Sex differences in the level of Bcl-2 family proteins and caspase-3 activation in the sexually dimorphic nuclei of the preoptic area in postnatal rats. J Neurobiol 2006; 66 (13) 1411-1419
  • 79 Cao J, Patisaul HB. Sexually dimorphic expression of hypothalamic estrogen receptors α and β and Kiss1 in neonatal male and female rats. J Comp Neurol 2011; 519 (15) 2954-2977
  • 80 Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB. Reproductive hormone-dependent and -independent contributions to developmental Changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One 2010; 5 (7) e11911
  • 81 Takumi K, Iijima N, Ozawa H. Developmental changes in the expression of kisspeptin mRNA in rat hypothalamus. J Mol Neurosci 2011; 43 (2) 138-145
  • 82 Clarkson J, Herbison AE. Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J Neuroendocrinol 2011; 23 (4) 293-301
  • 83 Roybon L, Hjalt T, Christophersen NS, Li JY, Brundin P. Effects on differentiation of embryonic ventral midbrain progenitors by Lmx1a, Msx1, Ngn2, and Pitx3. J Neurosci 2008; 28 (14) 3644-3656
  • 84 Kwon YR, Jeong MH, Leem YE , et al. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Res (Amst) 2014; 13 (2) 262-274
  • 85 Gore AC. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 2008; 29 (3) 358-374
  • 86 Walker DM, Gore AC. Epigenetic impacts of endocrine disruptors in the brain. Front Neuroendocrinol 2016; 44: 1-26
  • 87 Patisaul HB. Effects of environmental endocrine disruptors and phytoestrogens on the kisspeptin system. Adv Exp Med Biol 2013; 455-479
  • 88 Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2016; 8: 1-15
  • 89 Bhattacharyya S, Bailey AP, Bronner-Fraser M, Streit A. Segregation of lens and olfactory precursors from a common territory: cell sorting and reciprocity of Dlx5 and Pax6 expression. Dev Biol 2004; 271 (2) 403-414
  • 90 Verwoerd CD, van Oostrom CG. Cephalic neural crest and placodes. Adv Anat Embryol Cell Biol 1979; 58: 1-75
  • 91 Hinks GL, Shah B, French SJ , et al. Expression of LIM protein genes Lmo1, Lmo2, and Lmo3 in adult mouse hippocampus and other forebrain regions: differential regulation by seizure activity. J Neurosci 1997; 17 (14) 5549-5559
  • 92 Toresson H, Campbell K. A role for Gsh1 in the developing striatum and olfactory bulb of Gsh2 mutant mice. Development 2001; 128 (23) 4769-4780
  • 93 Stenman J, Toresson H, Campbell K. Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 2003; 23 (1) 167-174
  • 94 Peretto P, Cummings D, Modena C , et al. BMP mRNA and protein expression in the developing mouse olfactory system. J Comp Neurol 2002; 451 (3) 267-278
  • 95 Stoykova A, Fritsch R, Walther C, Gruss P. Forebrain patterning defects in Small eye mutant mice. Development 1996; 122 (11) 3453-3465
  • 96 Osorio J, Mazan S, Rétaux S. Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 2005; 288 (1) 100-112
  • 97 Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci 2011; 31 (18) 6915-6927
  • 98 el Amraoui A, Dubois PM. Experimental evidence for an early commitment of gonadotropin-releasing hormone neurons, with special regard to their origin from the ectoderm of nasal cavity presumptive territory. Neuroendocrinology 1993; 57 (6) 991-1002
  • 99 Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 1989; 86 (20) 8132-8136
  • 100 Lee JM, Tiong J, Maddox DM, Condie BG, Wray S. Temporal migration of gonadotrophin-releasing hormone-1 neurones is modified in GAD67 knockout mice. J Neuroendocrinol 2008; 20 (1) 93-103
  • 101 Rugarli EI, Lutz B, Kuratani SC , et al. Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nat Genet 1993; 4 (1) 19-26
  • 102 Simonian SX, Herbison AE. Regulation of gonadotropin-releasing hormone (GnRH) gene expression during GnRH neuron migration in the mouse. Neuroendocrinology 2001; 73 (3) 149-156
  • 103 Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 2003; 130 (6) 1101-1111
  • 104 Tsai PS, Moenter SM, Postigo HR , et al. Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol Endocrinol 2005; 19 (1) 225-236
  • 105 Chung WCJ, Moyle SS, Tsai PS. Fibroblast growth factor 8 signaling through fibroblast growth factor receptor 1 is required for the emergence of gonadotropin-releasing hormone neurons. Endocrinology 2008; 149 (10) 4997-5003
  • 106 Matsumoto S, Yamazaki C, Masumoto KH , et al. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci U S A 2006; 103 (11) 4140-4145
  • 107 Pitteloud N, Zhang C, Pignatelli D , et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A 2007; 104 (44) 17447-17452
  • 108 Kotan LD, Hutchins BI, Ozkan Y , et al. Mutations in FEZF1 cause Kallmann syndrome. Am J Hum Genet 2014; 95 (3) 326-331
  • 109 Cronin AS, Horan TL, Spergel DJ, Brooks AN, Hastings MH, Ebling FJ. Neurotrophic effects of BDNF on embryonic gonadotropin-releasing hormone (GnRH) neurons. Eur J Neurosci 2004; 20 (2) 338-344
  • 110 Cariboni A, Davidson K, Rakic S, Maggi R, Parnavelas JG, Ruhrberg C. Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 2011; 20 (2) 336-344
  • 111 Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31) 12689-12697
  • 112 Kim J, Tolson KP, Dhamija S, Kauffman AS. Developmental GnRH signaling is not required for sexual differentiation of kisspeptin neurons but is needed for maximal Kiss1 gene expression in adult females. Endocrinology 2013; 154 (9) 3273-3283
  • 113 Severi I, Perugini J, Mondini E , et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci 2013; 7: 263
  • 114 Miranda-Angulo AL, Byerly MS, Mesa J, Wang H, Blackshaw S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol 2014; 522 (4) 876-899
  • 115 Al Omran AJ, Saternos HC, Liu T, Nauli SM, AbouAlaiwi WA. Live imaging of the ependymal cilia in the lateral ventricles of the mouse brain. J Vis Exp 2015; 100 (100) e52853
  • 116 Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 2013; 521 (15) 3389-3405
  • 117 Zhang Y, Huang G, Shornick LP , et al. A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells. Am J Respir Cell Mol Biol 2007; 36 (5) 515-519
  • 118 Park R, Moon UY, Park JY , et al. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun 2016; 7: 10329
  • 119 Yu K, McGlynn S, Matise MP. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development 2013; 140 (7) 1594-1604
  • 120 Ren H, Guo W, Liu W , et al. DAPT mediates atoh1 expression to induce hair cell-like cells. Am J Transl Res 2016; 8 (2) 634-643
  • 121 Lavado A, Oliver G. Six3 is required for ependymal cell maturation. Development 2011; 138 (24) 5291-5300
  • 122 Cuevas E, Rybak-Wolf A, Rohde AM, Nguyen DT, Wulczyn FG. Lin41/Trim71 is essential for mouse development and specifically expressed in postnatal ependymal cells of the brain. Front Cell Dev Biol 2015; 3: 20
  • 123 Ma MS, Brouwer N, Wesseling E , et al. Multipotent stem cell factor UGS148 is a marker for tanycytes in the adult hypothalamus. Mol Cell Neurosci 2015; 65: 21-30
  • 124 Salvatierra J, Lee DA, Zibetti C , et al. The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J Neurosci 2014; 34 (50) 16809-16820
  • 125 Robins SC, Stewart I, McNay DE , et al. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 2013; 4: 2049
  • 126 Chaker Z, George C, Petrovska M , et al. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol Aging 2016; 41: 64-72
  • 127 Prevot V, Bellefontaine N, Baroncini M , et al. Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 2010; 22 (7) 639-649
  • 128 Rodríguez EM, Blázquez JL, Pastor FE , et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 2005; 247: 89-164
  • 129 Frayling C, Britton R, Dale N. ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 2011; 589 (Pt 9): 2275-2286
  • 130 Millán C, Martínez F, Cortés-Campos C , et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro 2010; 2 (3) e00035
  • 131 Pearson CA, Ohyama K, Manning L, Aghamohammadzadeh S, Sang H, Placzek M. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development. Development 2011; 138 (12) 2613-2624