J Pediatr Infect Dis 2016; 11(03): 65-71
DOI: 10.1055/s-0036-1597311
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Role of Continuous Renal Replacement Therapy and Therapeutic Plasma Exchange in Sepsis

Brian C. Bridges
1   Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
,
David T. Selewski
2   Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States
› Author Affiliations
Further Information

Publication History

15 August 2016

09 September 2016

Publication Date:
14 December 2016 (online)

Abstract

In this article, we will look at the role of continuous renal replacement therapy, therapeutic plasma exchange, and adsorptive therapies in the treatment of severe sepsis. We will examine the evidence behind providing these forms of extracorporeal support in severe sepsis and discuss the important factors when considering these therapies in critically ill children.

 
  • References

  • 1 Weiss SL, Fitzgerald JC, Pappachan J. , et al; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191 (10) 1147-1157
  • 2 Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebbar KB. Pediatric severe sepsis: current trends and outcomes from the Pediatric Health Information Systems database. Pediatr Crit Care Med 2014; 15 (09) 828-838
  • 3 Ruth A, McCracken CE, Fortenberry JD, Hebbar KB. Extracorporeal therapies in pediatric severe sepsis: findings from the pediatric health-care information system. Crit Care 2015; 19: 397
  • 4 Ronco C, Inguaggiato P, D'Intini V. , et al. The role of extracorporeal therapies in sepsis. J Nephrol 2003; 16 (Suppl. 07) S34-S41
  • 5 Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369 (21) 2063
  • 6 Ronco C, Tetta C, Mariano F. , et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs 2003; 27 (09) 792-801
  • 7 Selewski DT, Cornell TT, Heung M. , et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med 2014; 40 (10) 1481-1488
  • 8 Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 2010; 38 (03) 933-939
  • 9 Bagshaw SM, George C, Bellomo R. ; ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 2008; 12 (02) R47
  • 10 Bagshaw SM, Uchino S, Bellomo R. , et al; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2007; 2 (03) 431-439
  • 11 Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney injury. Semin Nephrol 2015; 35 (01) 2-11
  • 12 Plötz FB, Bouma AB, van Wijk JA, Kneyber MC, Bökenkamp A. Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 2008; 34 (09) 1713-1717
  • 13 Palmieri T, Lavrentieva A, Greenhalgh D. An assessment of acute kidney injury with modified RIFLE criteria in pediatric patients with severe burns. Intensive Care Med 2009; 35 (12) 2125-2129
  • 14 Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol 2011; 22 (06) 999-1006
  • 15 Blatt NB, Srinivasan S, Mottes T, Shanley MM, Shanley TP. Biology of sepsis: its relevance to pediatric nephrology. Pediatr Nephrol 2014; 29 (12) 2273-2287
  • 16 Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int 2006; 69 (11) 1996-2002
  • 17 Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow and function during recovery from experimental septic acute kidney injury. Intensive Care Med 2007; 33 (09) 1614-1618
  • 18 Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 2004; 32 (09) 1825-1831
  • 19 Di Giantomasso D, May CN, Bellomo R. Vital organ blood flow during hyperdynamic sepsis. Chest 2003; 124 (03) 1053-1059
  • 20 Hotchkiss RS, Swanson PE, Freeman BD. , et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27 (07) 1230-1251
  • 21 Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol 2000; 15 (1–2): 11-13
  • 22 Sutherland SM, Alexander SR. Continuous renal replacement therapy in children. Pediatr Nephrol 2012; 27 (11) 2007-2016
  • 23 Hanafusa N. Application of continuous renal replacement therapy: what should we consider based on existing evidence?. Blood Purif 2015; 40 (04) 312-319
  • 24 Symons JM, Chua AN, Somers MJ. , et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the Prospective Pediatric Continuous Renal Replacement Therapy Registry. Clin J Am Soc Nephrol 2007; 2 (04) 732-738
  • 25 Joannidis M. Continuous renal replacement therapy in sepsis and multisystem organ failure. Semin Dial 2009; 22 (02) 160-164
  • 26 Vinsonneau C, Camus C, Combes A. , et al; Hemodiafe Study Group. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 2006; 368 9533 379-385
  • 27 Lins RL, Elseviers MM, Van der Niepen P. , et al; SHARF Investigators. Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: results of a randomized clinical trial. Nephrol Dial Transplant 2009; 24 (02) 512-518
  • 28 Kellum JA, Angus DC, Johnson JP. , et al. Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med 2002; 28 (01) 29-37
  • 29 Schneider AG, Bellomo R, Bagshaw SM. , et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 2013; 39 (06) 987-997
  • 30 McMaster P, Shann F. The use of extracorporeal techniques to remove humoral factors in sepsis. Pediatr Crit Care Med 2003; 4 (01) 2-7
  • 31 Cole L, Bellomo R, Hart G. , et al. A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit Care Med 2002; 30 (01) 100-106
  • 32 Goldstein SL, Somers MJ, Baum MA. , et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 2005; 67 (02) 653-658
  • 33 Goldstein SL, Currier H, Graf CD, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics 2001; 107 (06) 1309-1312
  • 34 Sutherland SM, Zappitelli M, Alexander SR. , et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the Prospective Pediatric Continuous Renal Replacement Therapy Registry. Am J Kidney Dis 2010; 55 (02) 316-325
  • 35 Selewski DT, Cornell TT, Lombel RM. , et al. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med 2011; 37 (07) 1166-1173
  • 36 Foland JA, Fortenberry JD, Warshaw BL. , et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med 2004; 32 (08) 1771-1776
  • 37 Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care 2009; 24 (03) 394-400
  • 38 Modem V, Thompson M, Gollhofer D, Dhar AV, Quigley R. Timing of continuous renal replacement therapy and mortality in critically ill children*. Crit Care Med 2014; 42 (04) 943-953
  • 39 Gulla KM, Sachdev A, Gupta D, Gupta N, Anand K, Pruthi PK. Continuous renal replacement therapy in children with severe sepsis and multiorgan dysfunction - a pilot study on timing of initiation. Indian J Crit Care Med 2015; 19 (10) 613-617
  • 40 Brierley J, Carcillo JA, Choong K. , et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 2009; 37 (02) 666-688
  • 41 Bellomo R, Tipping P, Boyce N. Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med 1993; 21 (04) 522-526
  • 42 Peng Y, Yuan Z, Li H. Removal of inflammatory cytokines and endotoxin by veno-venous continuous renal replacement therapy for burned patients with sepsis. Burns 2005; 31 (05) 623-628
  • 43 Sieberth HG, Kierdorf HP. Is cytokine removal by continuous hemofiltration feasible?. Kidney Int Suppl 1999; 72 (72) S79-S83
  • 44 Flores FX, Brophy PD, Symons JM. , et al. Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the Prospective Pediatric CRRT Registry Group. Pediatr Nephrol 2008; 23 (04) 625-630
  • 45 Ronco C, Bellomo R, Homel P. , et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000; 356 9223 26-30
  • 46 Palevsky PM, Zhang JH, O'Connor TZ. , et al; VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 2008; 359 (01) 7-20
  • 47 Bellomo R, Cass A, Cole L. , et al; RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 2009; 361 (17) 1627-1638
  • 48 Joannes-Boyau O, Honoré PM, Perez P. , et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 2013; 39 (09) 1535-1546
  • 49 Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol 2004; 19 (12) 1394-1399
  • 50 Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2012; 2: 1-138
  • 51 De Vriese AS, Colardyn FA, Philippé JJ, Vanholder RC, De Sutter JH, Lameire NH. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 1999; 10 (04) 846-853
  • 52 Yumoto M, Nishida O, Moriyama K. , et al. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration. Ther Apher Dial 2011; 15 (04) 385-393
  • 53 Morgera S, Haase M, Kuss T. , et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med 2006; 34 (08) 2099-2104
  • 54 Haase M, Bellomo R, Morgera S, Baldwin I, Boyce N. High cut-off point membranes in septic acute renal failure: a systematic review. Int J Artif Organs 2007; 30 (12) 1031-1041
  • 55 Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000; 118 (01) 146-155
  • 56 Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115 (02) 462-474
  • 57 Shaw AR, Chaijamorn W, Mueller BA. We underdose antibiotics in patients on CRRT. Semin Dial 2016; 29 (04) 278-280
  • 58 Seyler L, Cotton F, Taccone FS. , et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 2011; 15 (03) R137
  • 59 Roberts DM, Roberts JA, Roberts MS. , et al; RENAL Replacement Therapy Study Investigators. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 2012; 40 (05) 1523-1528
  • 60 Chaijamorn W, Jitsurong A, Wiwattanawongsa K, Wanakamanee U, Dandecha P. Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients. Int J Antimicrob Agents 2011; 38 (02) 152-156
  • 61 Chaijamorn W, Wanakamanee U. Pharmacokinetics of vancomycin in critically ill patients undergoing continuous venovenous haemodialysis. Int J Antimicrob Agents 2014; 44 (04) 367-368
  • 62 Beumier M, Casu GS, Hites M. , et al. β-lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care 2014; 18 (03) R105
  • 63 Fortenberry JD, Paden ML. Extracorporeal therapies in the treatment of sepsis: experience and promise. Semin Pediatr Infect Dis 2006; 17 (02) 72-79
  • 64 Sussmane JBVS. Plasmapheresis. In: Annich GM, Lynch WR, MacLauren G, Wilson JM, Bartlett RH. , ed. ECMO: Extracorporeal Cardiopulmonary Support in Critical Care. 4th ed. Ann Arbor, Michigan: Extracorporeal Life Support Organization; 2012: 357-373
  • 65 Winters JL. Plasma exchange: concepts, mechanisms, and an overview of the American Society for Apheresis guidelines. Hematology (Am Soc Hematol Educ Program) 2012; 2012 (12) 7-12
  • 66 Churchwell KB, McManus ML, Kent P. , et al. Intensive blood and plasma exchange for treatment of coagulopathy in meningococcemia. J Clin Apher 1995; 10 (04) 171-177
  • 67 Reeves JH, Butt WW, Shann F. , et al; Plasmafiltration in Sepsis Study Group. Continuous plasmafiltration in sepsis syndrome. Crit Care Med 1999; 27 (10) 2096-2104
  • 68 Hjorth V, Stenlund G. Plasmapheresis as part of the treatment for septic shock. Scand J Infect Dis 2000; 32 (05) 511-514
  • 69 Stegmayr BG, Banga R, Berggren L, Norda R, Rydvall A, Vikerfors T. Plasma exchange as rescue therapy in multiple organ failure including acute renal failure. Crit Care Med 2003; 31 (06) 1730-1736
  • 70 Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med 2002; 28 (10) 1434-1439
  • 71 Rimmer E, Houston BL, Kumar A. , et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 2014; 18 (06) 699
  • 72 Bridges BC, Hardison D, Pietsch J. A case series of the successful use of ECMO, continuous renal replacement therapy, and plasma exchange for thrombocytopenia-associated multiple organ failure. J Pediatr Surg 2013; 48 (05) 1114-1117
  • 73 Dyer M, Neal MD, Rollins-Raval MA, Raval JS. Simultaneous extracorporeal membrane oxygenation and therapeutic plasma exchange procedures are tolerable in both pediatric and adult patients. Transfusion 2014; 54 (04) 1158-1165
  • 74 Kawai Y, Cornell TT, Cooley EG. , et al. Therapeutic plasma exchange may improve hemodynamics and organ failure among children with sepsis-induced multiple organ dysfunction syndrome receiving extracorporeal life support. Pediatr Crit Care Med 2015; 16 (04) 366-374
  • 75 Rock GA, Shumak KH, Buskard NA. , et al; Canadian Apheresis Study Group. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N Engl J Med 1991; 325 (06) 393-397
  • 76 Moake JL. Thrombotic microangiopathies. N Engl J Med 2002; 347 (08) 589-600
  • 77 Nguyen TC, Han YY, Kiss JE. , et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med 2008; 36 (10) 2878-2887
  • 78 Sevketoglu E, Yildizdas D, Horoz OO. , et al. Use of therapeutic plasma exchange in children with thrombocytopenia-associated multiple organ failure in the Turkish thrombocytopenia-associated multiple organ failure network. Pediatr Crit Care Med 2014; 15 (08) e354-e359
  • 79 Patient Plasma Response and Outcome in Septic Shock With Thrombocytopenia Associated Multiple Organ Failure in Children (TAMOF). 2016 . Available at: https://clinicaltrials.gov/ct2/show/NCT00118664 . Accessed: July 6, 2016
  • 80 Ronco C, Klein DJ. Polymyxin B hemoperfusion: a mechanistic perspective. Crit Care 2014; 18 (03) 309
  • 81 Vincent JL, Laterre PF, Cohen J. , et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock 2005; 23 (05) 400-405
  • 82 Cruz DN, Perazella MA, Bellomo R. , et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit Care 2007; 11 (02) R47
  • 83 Zhou F, Peng Z, Murugan R, Kellum JA. Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med 2013; 41 (09) 2209-2220
  • 84 Cruz DN, Antonelli M, Fumagalli R. , et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 2009; 301 (23) 2445-2452
  • 85 Payen DM, Guilhot J, Launey Y. , et al; ABDOMIX Group. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med 2015; 41 (06) 975-984