Postoperative Dural Arteriovenous Fistula after Clipping of Ruptured Saccular Aneurysm of Pericallosal Artery

Fístula arteriovenosa dural em pós-operatório de clipagem de aneurisma sacular roto de artéria pericalosa

Zeferino Demartini Jr1 Matheus Rodrigo Laurenti2 Tatiana von Hertwig de Oliveira1 Gelson Luis Koppe1 Marcio Luiz Tostes dos Santos2 Alexandre N. Francisco1

1 Department of Neurosurgery, Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, PR, Brazil
2 Department of Neurosurgery, Hospital de Base, São José do Rio Preto, SP, Brazil

Address for correspondence Zeferino Demartini Jr., MD, Departamento de Neurocirurgia, Hospital Universitário Cajuru – PUCPR, Avenida São José 300–Cristo Rei, Curitiba, PR, Brazil 80.050-350 (e-mail: demartiniz@gmail.com).

Abstract

Keywords
► cerebrovascular disorders
► intracranial arteriovenous malformations
► arteriovenous fistula
► intracranial aneurysm
► postoperative care
► intracranial hemorrhages

Dural arteriovenous fistulas (DAVFs) are pathologic dural shunts characterized by meningeal arterial supply, absence of nidus and drainage to dural venous sinuses or cortical veins. They are usually acquired lesions associated with specific disease and inflammatory processes, including craniotomy. We report a case of postoperative DAVF in a 59 year-old male presenting with a ruptured distal right anterior cerebral artery aneurysm. After an uneventful microsurgery for clipping, meningitis occurred on the ninth day, and was successfully treated. The one-year control angiogram showed a left occipital DAVF. The relevant literature on the occurrence of DAVFs is also presented.

Copyright © 2016 by Thieme Publicações Ltda, Rio de Janeiro, Brazil

License terms

Introduction

Dural arteriovenous fistulas (DAVFs) are pathologic dural shunts characterized by meningeal arterial supply that drains directly to dural venous sinuses or cortical veins. Dural arteriovenous fistulas represent 10–15% of all arteriovenous malformations, being distinguished from pial or parenchymal arteriovenous malformations by the absence of nidus. Although DAVFs may be idiopathic, they are predominantly acquired lesions, usually associated with specific disease processes, such as venous sinus thrombosis. Furthermore, the development of DAVFs following intracranial surgery has been reported. We report a case of appearance of a DAVF, absent in the initial examination, after craniotomy for clipping a ruptured distal right anterior cerebral artery aneurysm.

Case Report

A 59-year-old man was admitted to the emergency room with a history of sudden-onset headache followed by seizure. Upon examination he was somnolent, confused, responding to commands, score of 13 on the Glasgow coma scale, with no focal neurological deficit, but presenting with meningism, Hunt-Hess 2, and World Federation of Neurological Surgeons (WFNS) grading scale 2. A head computed tomography (CT) scan showed subarachnoid hemorrhage, Fisher scale of 3 (Fig. 1). The patient was submitted to digital subtraction angiography (DSA), revealing an aneurysm of the right pericallosal artery (Fig. 2A). A frontal craniotomy was performed with microsurgical clipping of the aneurysm, with no trans-procedural rupture or postoperative deficits. The patient woke up from the procedure without any deficit, and the control CT scan excluded infarcts or additional hemorrhage. On the ninth day, he was febrile, and his level of consciousness decreased. Bacterial meningitis was diagnosed by lumbar puncture, and treated with antibiotics for seven days, with satisfactory response. The patient was discharged after seventeen days in the hospital with a Glasgow outcome score of 5. A control DSA performed one year later confirmed the exclusion of the aneurysm from the circulation (Fig. 2B), but revealed the presence of a DAVF, absent in the initial examination, with feeding from branches of the left external carotid artery and normal antegrade flow to the transverse-sigmoid sinus, classified as Borden I/Cognard I (Fig. 3). The patient remained asymptomatic, with no residual deficits, under outpatient follow-up.

Discussion

In a study of 69 patients with DAVFs, Tsai et al found venous sinus thrombosis in two fifths of them. Dural arteriovenous fistulas are pathologic dural shunts characterized by meningeal arterial supply that drains directly to dural venous sinuses or cortical veins.
fistulas were also associated with thrombophilic abnormalities, and when correlated to sinus thrombosis, the etiopathogenesis includes two main theories: 1) venous hypertension causes the opening and enlargement of preexisting embryonic arteriovenous communications in the normal dura mater, resulting in pathologic shunts; and 2) outflow obstruction elevates venous pressure and decreases cerebral perfusion, leading to ischemia and induced angiogenesis. Even in patients without venous sinus occlusion, there are increased D-dimer levels that decrease after resolution of the fistula, indicating the presence of a thrombophilic state. In some cases, DAVFs may occur secondary to other abnormalities as well, such as after the endovascular treatment of carotid-cavernous fistulas, neoplastic venous sinus thrombosis, or increased venous pressure associated with meningioma growth. Inflammatory diseases affecting the dura, such as idiopathic hypertrophic pachymeningitis, viral and bacterial meningitis, were described to cause DAVFs to the straight, cavernous and superior sagittal sinuses respectively. Blunt or penetrating traumatic brain injury may also be causative factors. There are reports of fistulas appearing after craniotomy for surgical resection of arteriovenous malformations, brain stem cavernoma, and pilocytic astrocytoma. Horie et al reported the association of a DAVF with intracranial aneurysm in a 66 year-old male who presented with a ruptured middle cerebral aneurysm. Rarely, it occurs following intracranial procedures, like endoscopic third ventriculostomy or evacuation of subdural chronic hematoma. Since any stimuli may be the initial key to the inflammatory response causing angiogenesis, it is not clear in this case if the trigger for the development of the DAVF was the craniotomy, the meningitis or even an asymptomatic transient sinus thrombosis with spontaneous recanalization. As DAVFs following meningitis are not frequently reported in the literature, this may suggest that in this case the craniotomy could be the leading event to the development of the fistula.

Most DAVFs present in the fifth and sixth decades of life, and are located in the transverse, sigmoid and cavernous sinuses. As symptoms are related to lesion location and...
greater ability to predict the patient's prognosis.\(^3\)

Low-grade asymptomatic Borden type I, as well as Cognard I and IIa do not need to be treated, due to low risk of intracranial hemorrhage.\(^3,4\) In contrast, DAVFs presenting with cortical venous drainage (Borden II-III, Cognard IIb-V) have a worse natural history, with increased risk of bleeding associated with an annual mortality rate of 10.4\(^{4,34,36}\). Therefore, high-grade DAVFs require prompt intervention aiming to complete obliteration, due to the high risk of death or severe neurological dysfunction.\(^24\) Currently, due to the efficacy of endovascular therapy, this modality has become a first-line treatment of DAVFs, with surgery usually being indicated when endovascular approaches are not feasible or have failed.\(^1\)

Postoperative DSA in patients with aneurysms is safe and can be routinely performed.\(^37\) Although the long-term efficacy of aneurysm clipping is considerably high, the risk of de novo aneurysm formation supports the rationale for late angiographic follow-up review, particularly in patients with multiple aneurysms.\(^38\) The diagnosis of DAVFs following intracranial procedures is of great importance, since these lesions may behave aggressively.\(^39\) Therefore, once these lesions have a dynamic nature, as in this case, close monitoring is recommended to detect threatening lesions.\(^1\)

Disclosure
The authors report no conflicts of interest concerning the materials or methods used in this study or the findings specified in this paper.

Sources of Support
They were not used.

References
14. Table 1 | Cognard classification of dural arteriovenous fistulas

<table>
<thead>
<tr>
<th>Type</th>
<th>Venous Drainage</th>
<th>Flow Pattern in Sinus</th>
<th>Cortical Venous Drainage</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Dural sinus</td>
<td>Antegrade</td>
<td>No</td>
<td>Benign</td>
</tr>
<tr>
<td>IIa</td>
<td>Dural sinus</td>
<td>Antegrade</td>
<td>No</td>
<td>Benign</td>
</tr>
<tr>
<td>IIb</td>
<td>Dural sinus</td>
<td>Antegrade</td>
<td>Yes</td>
<td>Aggressive</td>
</tr>
<tr>
<td>IIa + b</td>
<td>Dural sinus</td>
<td>Antegrade</td>
<td>Yes</td>
<td>Aggressive</td>
</tr>
<tr>
<td>III</td>
<td>Cortical vein</td>
<td>Retrograde</td>
<td>Yes</td>
<td>Aggressive</td>
</tr>
<tr>
<td>IV</td>
<td>Cortical vein</td>
<td>Yes + venous ectasia</td>
<td>Aggressive</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Cortical vein with spinal perimedullary drainage</td>
<td>Yes</td>
<td>Aggressive</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Cognard classification of dural arteriovenous fistulas
38 David CA, Vishteh AG, Spetzler RF, Lemole M, Lawton MT, Partovi S. Late angiographic follow-up review of surgically treated aneurysms. J Neurosurg 1999;91(3):396–401