Synlett 2018; 29(08): 1028-1032
DOI: 10.1055/s-0036-1591944
letter
© Georg Thieme Verlag Stuttgart · New York

Bromotrifluoromethane: A Useful Reagent for Hydrotrifluoromethylation of Alkenes and Alkynes

Yu-Yan Ren
a   Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, Email: Zhengxing5018@yahoo.com   P. R. of China
,
Xing Zheng*
a   Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, Email: Zhengxing5018@yahoo.com   P. R. of China
,
b   Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China   Email: xgzhang@mail.sioc.ac.cn
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (21425208, 21672238, 21332010, and 2142002), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the Key Project of Hunan Province Science and Technology Department (2016DK2001), the Key Project of Hengyang Science and Technology Department (2017KJ166) and the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.
Further Information

Publication History

Received: 21 December 2017

Accepted after revision: 29 January 2018

Publication Date:
07 March 2018 (online)


Abstract

Bromotrifluoromethane (CF3Br) is a simple, inexpensive and abundant industrial material employed as a trifluoromethylating reagent. However, only limited strategies using CF3Br as a fluorine source are reported. Herein, we describe a visible-light-induced hydrotrifluoromethylation of alkenes and alkynes with CF3Br. The reaction proceeds under mild conditions with good functional group tolerance, providing a new route for the application of BrCF3 in organic synthesis.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Furuya T. Kamlet AS. Ritter T. Nature 2011; 473: 470
    • 1b Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
    • 1c Chu L. Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 1d Charpentier J. Fruh N. Togni A. Chem. Rev. 2015; 115: 650
    • 2a Wayne RP. Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets and their Satellites. Clarendon Press; Oxford: 1991
    • 2b Freemental M. Chem. Eng. News 1994; 19: 29
    • 2c Feiring A. Smart B. Fluorine Compounds, Organic. In Ullman’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 1988
  • 3 Rozen S. Hagooly A. Bromotrifluoromethane . In e-EROS Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons; Hoboken: 2005
    • 4a Francese C. Tordeux M. Wakselman C. J. Chem. Soc., Chem. Commun. 1987; 642
    • 4b Francese C. Tordeux T. Wakselman C. Tetrahedron Lett. 1988; 29: 1029
    • 4c Tordeux M. Francese C. Wakselman C. J. Chem. Soc., Perkin Trans. 1 1990; 1951
  • 5 Grobe J. Hegge J. Synlett 1995; 641
    • 6a Beckers H. Bürger H. Bursch P. Ruppert I. J. Organomet. Chem. 1986; 316: 41
    • 6b Field LD. Wilkinson MP. Tetrahedron Lett. 1992; 33: 7601
    • 6c Burger H. Dittmar T. Pawelke G. J. Fluorine Chem. 1995; 70: 89
  • 7 Paratian JM. Sibille S. Perichon J. J. Chem. Soc., Chem. Commun. 1992; 53
    • 8a Tordeux M. Langlois B. Wakselman C. J. Chem. Soc., Perkin Trans. 1 1990; 2293
    • 8b Qi Q. Shen Q. Lu L. J. Fluorine Chem. 2012; 133: 115
  • 9 Natte K. Jagadeesh RV. He L. Rabeah J. Chen J. Taeschler C. Ellinger S. Zaragoza F. Neumann H. Brückner A. Beller M. Angew. Chem. Int. Ed. 2016; 55: 2782

    • For a review, see:
    • 10a Alonso C. Marigorta EM. Rubiales G. Palacios F. Chem. Rev. 2015; 115: 1847

    • For selected examples, see:
    • 10b Wu X. Chu L. Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 2198
    • 10c Mizuta S. Verhoog S. Engle KM. Khotavivattana T. O’Duill M. Wheelhouse K. Rassias G. Médebielle M. Gouverneur V. J. Am. Chem. Soc. 2013; 135: 2505
    • 10d Yu P. Zheng S.-C. Yang N.-Y. Tan B. Liu X.-Y. Angew. Chem. Int. Ed. 2015; 54: 4041
    • 10e Cheng Y. Yu S. Org. Lett. 2016; 18: 2962
    • 11a Tordeux M. Langlois B. Wakselman C. J. Org. Chem. 1989; 54: 2452
    • 11b Naumann D. Tyrra W. Kock B. Rudolph W. Wilkes B. J. Fluorine Chem. 1994; 67: 91
    • 11c Paratian JM. Labbé E. Sibille S. Nédélec JY. Périchon J. J. Organomet. Chem. 1995; 487: 61
    • 11d Nagasaki N. Morikuni Y. Kawada K. Arai S. Catal. Today 2004; 88: 121
    • 12a Feng Z. Chen F. Zhang X. Org. Lett. 2012; 14: 1938
    • 12b Min Q.-Q. Yin Z. Feng Z. Guo W.-H. Zhang X. J. Am. Chem. Soc. 2014; 136: 1230
    • 12c Feng Z. Min Q.-Q. Xiao Y.-L. Zhang B. Zhang X. Angew. Chem. Int. Ed. 2014; 53: 1669
    • 12d An L. Xiao Y.-L. Min Q.-Q. Zhang X. Angew. Chem. Int. Ed. 2015; 54: 9079
    • 12e Feng Z. Min Q.-Q. Fu X.-P. An L. Zhang X. Nat. Chem. 2017; 9: 918
    • 12f Fu X.-P. Xiao Y.-L. Zhang X. Chin. J. Chem. 2018; 36: 143
    • 13a Huang X.-T. Chen Q.-Y. J. Org. Chem. 2011; 66: 4651
    • 13b Feng Z. Min Q.-Q. Zhao H.-Y. Gu J.-W. Zhang X. Angew. Chem. Int. Ed. 2015; 54: 1270
    • 14a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 14b Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 14c Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 14d Kärkäs MD. Porco JA. Jr. Stephenson CR. J. Chem. Rev. 2016; 116: 9683
  • 15 Hydrotrifluoromethylation with CF3Br;Typical Procedure To a 25 mL Schlenk tube were added fac-Ir(ppy)3 (0.5 mol%) and K2CO3 (126 mg, 0.9 mmol, 3.0 equiv). The mixture was then evacuated and backfilled with argon (3 times). The mixture was evacuated again and backfilled with CF3Br (1 atm), followed by the addition of alkene 1b (0.3 mmol, 1.0 equiv) and anhydrous THF (1.5 mL). The tube was screw-capped and irradiated with a blue LED (12 W) at room temperature. After stirring for 30 h, the reaction mixture was diluted with EtOAc (2 mL) and filtered through a pad of Celite. The filtrate was concentrated, and the residue was purified by silica gel chromatography (hexane/EtOAc, 20:1) to give product 3b (50 mg, 60% yield) as a colorless oil.
  • 16 5,5,5-Trifluoropentyl 4-Methoxybenzoate (3b) 1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J = 8.3 Hz, 2 H), 6.91 (d, J = 8.4 Hz, 2 H), 4.29 (t, J = 5.9 Hz, 2 H), 3.83 (s, 3 H), 2.23–2.06 (m, 2 H), 1.86–1.76 (m, 2 H), 1.76–1.65 (m, 2 H); 13C NMR (101 MHz, CDCl3): δ = 166.2, 163.4, 131.5, 127.0 (q, J = 276.4 Hz), 122.5, 113.6, 63.8, 55.4, 33.4 (q, J = 28.7 Hz), 27.9, 18.8 (q, J = 3.0 Hz); 19F NMR (376 MHz, CDCl3): δ = –66.5 (t, J = 10.8 Hz, 3 F); MS (EI): m/z (%) = 276 [M]+, 135 (100); HRMS (EI): m/z [M]+ calcd for C13H15O3F3: 276.0973; found: 276.0978.