Synthesis 2018; 50(10): 2001-2008
DOI: 10.1055/s-0036-1591923
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Access to 3-Unsubstituted Tetrahydroisoquinolonic Acids via the Castagnoli–Cushman Reaction

Natalia Guranova
Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Dmitry Dar’in
Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Mikhail Krasavin*
Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   Email: m.krasavin@spbu.ru
› Author Affiliations
This research was supported by the Russian Science Foundation (project grant 14-50-00069).
Further Information

Publication History

Received: 22 November 2017

Accepted after revision: 08 January 2018

Publication Date:
27 February 2018 (online)


Abstract

Hitherto undescribed 3-unsubstituted tetrahydroisoquinolonic acids (isolated as their respective methyl esters) were accessed for the first time by the uncatalyzed, thermally promoted Castagnoli–Cushman reaction (CCR) of homophthalic anhydride (HPA) and a series of 1,3,5-triazinanes. The moderate yields observed in some cases are most likely associated with a persistent impurity also formed in these reactions. The new scaffold is expected to find novel medicinal utility (compared to the traditional CCR adducts) because it lacks a substituent at the 3-position.

Supporting Information

 
  • References and notes

  • 1 Address correspondence to this author at the Laboratory of Chemical Pharmacology, Institute of Chemistry, Saint Petersburg State University, 26 Universitetskyi prospekt, Peterhof 198504, Russian Federation.
  • 2 Krasavin M. Dar’in D. Tetrahedron Lett. 2016; 57: 1635
  • 3 Cushman M. Castagnoli N. J. Org. Chem. 1973; 38: 440
  • 4 Evans BE. Rittle KE. Bock MG. DiPardo RM. Freidinger RM. Whitter WL. Lundell GF. Veber DF. Anderson PS. J. Med. Chem. 1988; 31: 2235
  • 5 Humphries PS. Benbow JW. Bonin PD. Boyer D. Doran SD. Frisbie RK. Piotrowski DW. Balan G. Bechle BM. Conn EL. Dirico KJ. Oliver RM. Soeller WC. Southers JA. Yang X. Bioorg. Med. Chem. Lett. 2009; 19: 2400
  • 6 Guy RK. Zhu F. Clark JA. Guiguemde WA. Floyd D. Knapp S. Stein P. Castro S. PCT Int. Appl WO2013027196, 2013 Chem. Abstr. 2013, 158, 359589
  • 7 Wang T. Yang Z. Zhang Y. Yan W. Wang F. He L. Zhou Y. Chen L. Eur. J. Med. Chem. 2017; 129: 275
  • 8 Angulo J. Goffin SA. Gandhi D. Searcey M. Howell LA. Chem. Eur. J. 2016; 22: 5858
  • 9 Kiselev E. Dexheimer TS. Pommier Y. Cushman M. J. Med. Chem. 2010; 53: 8716
  • 10 Conda-Sheridan M. Reddy PV. N. Morrell A. Cobb BT. Marchand C. Agama K. Chergui A. Renaud A. Stephen AG. Bindu LK. Pommier Y. Cushman M. J. Med. Chem. 2013; 56: 182
  • 11 Nguyen TX. Abdelmalak M. Marchand C. Agama K. Pommier Y. Cushman M. J. Med. Chem. 2015; 58: 3188
  • 12 Lepikhina A. Bakulina O. Dar’in D. Krasavin M. RSC Adv. 2016; 6: 83808
  • 13 Bogdanov MG. Mitrev Y. Tiritiris I. Eur. J. Org. Chem. 2011; 377
  • 14 Barluenga J. Bayon AM. Campos P. Asensio G. Gonzalez-Nunez E. Molina Y. J. Chem. Soc., Perkin Trans. 1 1988; 1631
  • 15 Shiozaki M. Mazuko H. Bull. Chem. Soc. Jpn. 1987; 60: 645
  • 16 Wu H. Wan Y. Ye L. Lu L. Asian J. Chem. 2010; 22: 1097