Thiocyanation of Pyrazoles Using KSCN/K₂S₂O₈ Combination

T. Songsichan et al.

Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

chutima.korn@mahidol.ac.th

Sulfur-containing organic molecules are important structural motifs in organic synthesis, organic materials, agrochemicals, nanotechnology and pharmaceutically important compounds in which the unique properties stem from the enhanced physical and chemical features of the sulfur atom. Therefore, there are continuing efforts in the development of convenient methods for the introduction of sulfur moieties into organic molecules and materials as well as pharmaceuticals. Among various sulfur-containing substances, thiocyanate derivatives, particularly aryl- and heteroaryl thiocyanates, are an important class of compounds exhibiting pharmacological potential and serving as versatile synthetic precursors for the synthesis of various organosulfur derivatives such as thioles, thioethers, thiocarbamates, thiosteres, disulfides, sulfonic acids, sulfonyl chlorides, and sulfonyl cyanides. A number of synthetic routes are available for the synthesis of aryl- and heteroaryl thiocyanates including coupling of diazonium salts with metal thiocyanates under Sandmeyer type conditions, cyonation of organosulfur and organometallic compounds, metal-catalyzed coupling reaction of arylboronic acids with trimethylsilylthiocyanate (TMSNCS) or aryl halides with thiocyanate salts and the direct thiocyanation of C–H bonds with thiocyanates. Pyrazoles and their derivatives have attracted increasing interest in the fields of medicine and pharmacology because of their interesting biological properties including antifungal, antibacterial, anticancer, anti-inflammatory, antiviral, antioxidant, cytotoxic, antihypertensive, antitubercular, analgesic, antipyretic, anticonvulsant, and A3 adenosine receptor antagonistic activities. Additionally, pyrazole derivatives are also important in agricultural chemistry. Although thiocyanation of amines and heterocyclic compounds such as indoles, pyroles, carbazoles, 8-aminoquinolines and imidazopyridines has been reported, the thiocyanation of pyrazoles has been little explored. Most recently, and during the preparation of this manuscript, Bhat and co-workers reported thiocyanation of phenols, anilines and indoles using K₂S₂O₈/NH₄SCN in CH₂Cl₂. This prompts us to report our study on a direct regioselective C4-thiocyanation of pyrazoles with commercially available and inexpensive potassium thiocyanate (KSCN) in the presence of K₂S₂O₈ under environmentally friendly conditions and with short reaction times.

We began our study by employing 1-methyl-3,5-diphenyl-1H-pyrazole (1a) as a model substrate to screen for optimum reaction conditions. Various reaction parameters including solvent, thiocyanate source, oxidizing agent, reagent stoichiometry, temperature and reaction time were screened and the results are summarized in Table 1. First, various solvents were evaluated using 1-methyl-3,5-diphenyl-1H-pyrazole (1a; 0.5 mmol), KSCN (2a; 2 equiv) and K₂S₂O₈ (1.5 equiv) at room temperature for 24 h (entries 1–5). It was found that only trace amounts of 3a were observed when H₂O, 1,4-dioxane, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and CH₂Cl₂ were employed as the solvents (entries 1–5). Better results were obtained when the reactions were performed in EtOH, CH₃OH, EtOAc,
CH₃CN, 1,2-dichloroethane (DCE) and DMSO (entries 6–11), and DMSO provided the highest yield of the desired product 3a of 96% (entry 11). Under the optimized conditions (entry 11), the source of thiocyanate was next examined and KSCN gave the optimal results (entries 11–13). Among oxidizing agents screened including K₂S₂O₈, OXONE®, Na₂S₂O₈, diacetoxycetone (DIB), 2-iodoxybenzoic acid (IBX), tert-butyl hydroperoxide (TBHP) and cerium(IV) ammonium nitrate (CAN), K₂S₂O₈ was optimum (entries 11, 14–19). Finally, no desired product 3a was observed when the oxidizing agent was excluded from the reaction (entry 20). After the optimal solvent, thiocyanate source and oxidizing agent were identified, we further optimized the reagent stoichiometry, temperature and reaction time. We were pleased to observe that 3a was obtained in excellent yield (99% yield) when the reaction was performed in DMSO at 60 °C for 2 h, employing KSCN (1.5 equiv) and K₂S₂O₈ (1.5 equiv) (entry 21). Notably, the yield slightly dropped when p-toluenesulfonic acid (TsOH, 1 equiv) was added as an additive (entry 22). In contrast, the presence of K₂CO₃ (1 equiv) significantly lowered the yield of 3a (entry 23). Finally, no improvement was observed when the stoichiometry of KSCN or K₂S₂O₈ was increased. After extensive experimentations, the optimum reaction conditions were chosen as: 1 (0.5 mmol; 1.0 equiv), KSCN (1.5 equiv) and K₂S₂O₈ (1.5 equiv) in DMSO at 60 °C for 2 h (entry 21).

With optimized reaction conditions established (Table 1, entry 21), the substrate scope and limitations of the reaction were evaluated; the results are summarized in Scheme 1. A variety of N-substituted-3,5-diphenyl- and N-substituted-3,5-dimethylpyrazoles was first examined. The reactions of N-substituted-3,5-dimethylpyrazoles including N-methyl-, N-phenyl-, N-allyl-, N-alkyl- and N-(2,2-dimethoxyethyl)-3-dimethylpyrazoles proceeded smoothly to yield the corresponding thiocyanated products 3a-f in moderate to excellent yields (52–99%). N-Benzyl-3,5-dimethylpyrazole (1g) also worked well to provide the corresponding product 3g in 95% yield. On the other hand, the reaction of N-(1-propenyl)-3,5-dimethylpyrazole (1h) proceeded with lower efficiency, yielding 3h in 50% yield. N-Aryl-3,5-dimethylpyrazoles bearing electronically different substituents on the phenyl ring were also investigated. N-Aryl-3,5-dimethylpyrazoles bearing electron-donating groups (4-CH₃ and 4-OCH₃) afforded 3i-k in high yields (92–97%). The reaction of N-(4-fluorophenyl)-3,5-dimethylpyrazole (1l) provided 3l in 98% yield. A low yield was observed when N-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (1m) was employed as a substrate. Next, the reactions of 1H-pyrazoles, including symmetrical 3,5-dialkyl-1H-pyrazoles 1n-q, symmetrical 3,5-diaryl-1H-pyrazoles 1r-v and unsymmetrical 3,5-disubstituted-1H-pyrazoles 1w-ac, were also evaluated. Gratifyingly, it was found that the corresponding thiocyanated products 3n-ac were isolated in good to excellent yields (81–99%). Notably, the N-unprotected-1H-pyrazoles are potentially useful for further synthetic manipulation. 3-Phenyl-1H-pyrazol-5-ol (1ad) and 3-phenyl-1H-pyrazol-5-amine (1ae) gave moderate yields of 3ad (53% yield) and 3ae (55% yield). Pyrazole, N-methylpyrazole and N-benzylpyrazole (1af–ah) smoothly underwent the reaction to yield C₄-thiocyanated products 3af–ah in low to moderate yields (13–57%). These results implied that the present thiocyanation reaction took place regioselectively at C₄ of the pyrazole core. Moreover, the reactions of bis(3,5-dimethylpyrazol-1-yl)methane (1ai) and 1,3-bis(3,5-dimethylpyrazol-1-yl)propane (1aj) proceeded readily under standard reaction conditions (with the use of KSCN and K₂S₂O₈, 3.0 equiv each) to yield the corresponding

<table>
<thead>
<tr>
<th>Entry</th>
<th>SCN source (2)</th>
<th>Oxidant</th>
<th>Solvent</th>
<th>1a (%)b</th>
<th>3a (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>H₂O</td>
<td>98</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>1,4-dioxane</td>
<td>93</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>THF</td>
<td>98</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>DMF</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>CHCl₂</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>EtOH</td>
<td>66</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>CH₂OH</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>EtOAc</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>CH₃CN</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>DCE</td>
<td>54</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>DMSO</td>
<td>1</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>Na₂SCN (2b)</td>
<td>K₂S₂O₈</td>
<td>DMSO</td>
<td>7</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>NH₄SCN (2c)</td>
<td>K₂S₂O₈</td>
<td>DMSO</td>
<td>12</td>
<td>86</td>
</tr>
<tr>
<td>14</td>
<td>KSCN (2a)</td>
<td>OXONE®</td>
<td>DMSO</td>
<td>31</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>KSCN (2a)</td>
<td>Na₂S₂O₈</td>
<td>DMSO</td>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>16</td>
<td>KSCN (2a)</td>
<td>DIB</td>
<td>DMSO</td>
<td>85</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>KSCN (2a)</td>
<td>IBX</td>
<td>DMSO</td>
<td>90</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>KSCN (2a)</td>
<td>TBHP</td>
<td>DMSO</td>
<td>96</td>
<td>trace</td>
</tr>
<tr>
<td>19</td>
<td>KSCN (2a)</td>
<td>CAN</td>
<td>DMSO</td>
<td>53</td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>KSCN (2a)</td>
<td>–</td>
<td>DMSO</td>
<td>98</td>
<td>–</td>
</tr>
<tr>
<td>21</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>DMSO</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>22</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>DMSO</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>23</td>
<td>KSCN (2a)</td>
<td>K₂S₂O₈</td>
<td>DMSO</td>
<td>19</td>
<td>79</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1a (0.5 mmol), 2 (2.0 equiv) and oxidant (1.5 equiv) in solvent (3 mL), open air at room temperature for 24 h.
b Isolated yield after column chromatography.
products in high yields (89% and 86%, respectively). Finally, the reaction of curcumin-derived pyrazole (1ak) provided the thiocyanated product 3ak in 28% yield.

To demonstrate the utility of the present reaction further, a scale-up reaction was carried out. Under standard reaction conditions, 1a (1.17 g, 5 mmol) was efficiently converted into 3a in 99% yield (Scheme 2). Additionally, further synthetic manipulations of 3a were also demonstrated (Scheme 3). The thiocyanate group of 3a can be transformed into thiocarbamate 4a in 95% yield. Cycloaddition reaction of 3a with NaN₃ mediated by ZnCl₂ provided thiotetrazole 5a in 91% yield. Finally, upon treatment of 3a with LiAlH₄, the disulfide 6a was obtained in 71% yield.

To understand the reaction mechanism better, control experiments were carried out (Scheme 4). The yields of 3a dropped significantly when the reactions of 1a were carried out in the presence of either 2,6-di-tert-butyl-4-methylphenol (BHT) or hydroquinone. In the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), the reaction was totally closed down. Finally, styrene, commonly used as a radical trapping compound, was found to react competitively with reactive species formed in the reaction. Compound 1a was recovered in 58% yield and 3a was obtained as an inseparable mixture contaminated with unidentified materials. The observed experimental results imply that the reaction process is likely to involve a radical pathway.

On the basis of the control experiments and the previous related reports, a possible reaction pathway can be proposed (Scheme 5). First, a thiocyanate radical is formed from potassium thiocyanate (KSCN) with potassium persulfate (K₂S₂O₈) in dimethyl sulfoxide (DMSO) at 60 °C for 2 h. Isolated yield after column chromatography given in parentheses. * KSCN (3.0 equiv) and K₂S₂O₈ (3.0 equiv) in DMSO (3 mL), open air, 60 °C, 2 h. Isolated yield after column chromatography given in parentheses. ** KSCN (1.5 equiv) and K₂S₂O₈ (1.5 equiv) in DMSO (3 mL), open air, 60 °C, 2 h.
generated by the oxidation of KSCN with K₂S₂O₈. This thiocyanate radical then reacts with pyrazole 1 to give a radical intermediate A, which could be oxidized to carbocaticonic intermediate B by K₂S₂O₈. Finally, deprotonation of intermediate B takes place to provide the desired product 3.

In conclusion, we have demonstrated a facile method for thiocyanation of pyrazole derivatives. The reaction was found to be general and pyrazole derivatives bearing a wide variety of substituents are well tolerated. The use of commercially available and inexpensive reagents and the possibility of reaction scale-up make this protocol attractive for future development. Initial efforts to prove the reaction mechanism suggest that the reaction proceeds via radical intermediates.

All isolated compounds were characterized on the basis of ¹H NMR, ¹³C NMR, IR spectroscopic spectra, and HRMS data. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Ascend™ spectrometer. ¹H NMR and ¹³C NMR chemical shifts are reported in ppm using tetramethylsilane or the residual non-deuterated solvent peak as an internal standard. Infrared spectra were recorded with a Bruker ALPHA FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded with a Bruker micro TOF spectrometer in ESI mode. Melting points were recorded with a Sanyo Gallenkamp apparatus. Reactions were monitored by thin-layer chromatography and visualized by UV light. Products were purified by column chromatography (20% EtOAc/hexanes) afforded the desired product 3. Other pyrazoles were synthesized according to reported procedures (see the Supporting Information). Purification of the reaction products was carried out by column chromatography on silica gel (0.063–0.200 mm). After column chromatography, analytically pure solids were obtained by crystallization from CH₂Cl₂–hexanes.

C4 Thiocyanation of Pyrazoles; General Procedure

A 10 mL round-bottom flask was charged with pyrazole 1 (0.5 mmol), KSCN (72.9 mg, 0.75 mmol), K₂S₂O₈ (202.7 mg, 0.75 mmol) and DMSO (3 mL). ¹H NMR and ¹³C NMR chemical shifts are reported in ppm using tetramethylsilane or the residual non-deuterated solvent peak as an internal standard. Infrared spectra were recorded with a Bruker ALPHA FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded with a Bruker micro TOF spectrometer in ESI mode. Melting points were recorded with a Sanyo Gallenkamp apparatus. Reactions were monitored by thin-layer chromatography and visualized by UV light. Products were purified by column chromatography on silica gel (0.063–0.200 mm). After column chromatography, analytically pure solids were obtained by crystallization from CH₂Cl₂–hexanes.

1-Methyl-3,5-diphenyl-4-thiocyanato-1H-pyrazole (3a)

Prepared from 1-methyl-3,5-diphenyl-1H-pyrazole (1a, 117.1 mg). Purification by column chromatography (20% EtOAc/hexanes) afforded 3a (99%, 144.4 mg) as a white solid.

Mp 137.0–138.0 °C; R₂ = 0.57 (30% EtOAc/hexanes).

1,3,5-Triphenyl-4-thiocyanato-1H-pyrazole (3b)

Prepared from 1,3,5-triphenyl-1H-pyrazole (1b, 148.2 mg). Purification by column chromatography (10% EtOAc/hexanes) afforded 3b (63%, 111.6 mg) as a pale-yellow solid.

Mp 130.5–132.0 °C; R₂ = 0.64 (30% EtOAc/hexanes).

1-Allyl-3,5-diphenyl-4-thiocyanato-1H-pyrazole (3c)

Prepared from 1-allyl-3,5-diphenyl-1H-pyrazole (1c, 132.0 mg). Purification by column chromatography (10% EtOAc/hexanes) afforded 3c (77%, 122.2 mg) as a white solid.

Mp 110.5–112.0 °C; R₂ = 0.61 (30% EtOAc/hexanes).

IR (neat): 3498 (O–H), 2158 (C≡N), 11.8 (CH3).
1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 8.4 Hz, 2 H), 9.60–7.54 (m, 3 H), 7.53–7.44 (m, 5 H), 4.15 (t, J = 5.2 Hz, 2 H), 3.98 (t, J = 5.2 Hz, 2 H).
13C NMR (100 MHz, CDCl3): δ = 153.7 (C), 149.9 (C), 130.8 (C), 130.4 (CH), 129.95 (2×CH), 128.9 (3×CH), 128.5 (2×CH), 128.1 (2×CH), 127.0 (11×C), 94.5 (C), 61.0 (CH2), 51.9 (CH2).

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C18H15N3NaOS: 266.0729; found: 266.0770.

Synthesis of 3,5-dimethyl-1-(4-methoxyphenyl)-1H-pyrazole (1k, 93.1 mg). Purification by column chromatography (20% EtOAc/hexanes) afforded 3g (95%, 115.0 mg) as a white solid. Mp 82.5–83.5 °C; Rf = 0.50 (100% CH2Cl2).

IR (neat): 1750 (C=O), 1594 (C≡N), 11.9 (CH3).
1H NMR (400 MHz, CDCl3): δ = 3.74–7.25 (m, 3 H), 7.10 (d, J = 6.6 Hz, 2 H), 5.22 (s, 2 H), 2.36 (s, 3 H), 2.29 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ = 150.8 (C), 143.8 (C), 135.4 (C), 128.7 (2×CH), 127.8 (CH), 126.7 (2×CH), 110.9 (C), 94.9 (C), 53.7 (CH3), 11.8 (CH3), 10.0 (CH3).
1-(4-Fluorophenyl)-3,5-dimethyl-4-thiocyanato-1H-pyrazole (1l)
Prepared from 1-(4-fluorophenyl)-3,5-dimethyl-1H-pyrazole (1l, 95.1 mg). Purification by column chromatography (30% EtOAc/hexanes) afforded 3l (98%, 120.9 mg) as a pale-yellow solid.
Mp 77.0–79.0 °C; Rf = 0.37 (20% EtOAc/hexanes).
IR (neat): 3178 (N–H), 2156 (C≡N), 1535 and 1349 (N–O) cm–1.
1H NMR (400 MHz, CDCl 3): δ = 9.41 (br s, 1 H), 3.27 (sept, J = 7.0 Hz, 2 H), 1.34 (d, J = 7.0 Hz, 6 H).
13C NMR (100 MHz, CDCl 3): δ = 152.1 (2×C), 139.7 (2×C), 129.6 (2×CH), 120.0 (2×CH 2), 110.1 (s, 9 H), 117.7 (C), 93.4 (C).

3.5-Diisopropyl-4-thiocyanato-1H-pyrazole (3p)
Prepared from 3,5-diisopropyl-1H-pyrazole (1p, 76.1 mg). Purification by column chromatography (5% EtOAc/CH 2Cl 2) afforded 3p (97%, 101.0 mg) as a colorless oil.
Rf = 0.47 (30% EtOAc/CH 2Cl 2).
IR (neat): 3178 (N–H), 2156 (C≡N) cm–1.
1H NMR (400 MHz, CDCl 3): δ = 9.41 (br s, 1 H), 3.27 (sept, J = 7.0 Hz, 2 H), 1.34 (d, J = 7.0 Hz, 6 H).
13C NMR (100 MHz, CDCl 3): δ = 152.6 (2×CH 2), 137.5 mg) as a white solid.

3.5-Di-tert-butyl-4-thiocyanato-1H-pyrazole (3q)
Prepared from 3,5-di-tert-butyl-1H-pyrazole (1q, 90.1 mg). Purification by column chromatography (5% EtOAc/CH 2Cl 2) afforded 3q (89%, 105.4 mg) as a colorless solid.
Mp 155.5–157.5 °C; Rf = 0.61 (30% EtOAc/CH 2Cl 2).
IR (neat): 3259 (N–H), 2150 (C≡N) cm–1.
1H NMR (400 MHz, CDCl 3): δ = 10.11 (br s, 1 H), 1.51 (s, 18 H).
13C NMR (100 MHz, CDCl 3): δ = 160.3 (2×C), 112.7 (C), 90.6 (C), 33.0 (2×C), 29.3 (6×CH 3).

3.5-Diphenyl-4-thiocyanato-1H-pyrazole (3r)
Prepared from 3,5-diphenyl-1H-pyrazole (1r, 110.1 mg). Purification by column chromatography (10% EtOAc/CH 2Cl 2) afforded 3r (99%, 137.5 mg) as a white solid.
Mp 171.5–174.5 °C; Rf = 0.39 (30% EtOAc/CH 2Cl 2).
IR (neat): 3185 (N–H), 2157 (C≡N) cm–1.
1H NMR (400 MHz, CDCl 3): δ = 7.64 (dd, J = 7.6, 1.6 Hz, 4 H), 7.48–7.40 (m, 6 H).
13C NMR (100 MHz, CDCl 3): δ = 152.1 (2×C), 129.7 (2×CH 2), 128.9 (4×CH), 128.7 (2×C), 128.3 (4×CH 2), 111.7 (C), 93.4 (C).

4-Thiocyanato-3,5-di-p-tolyl-1H-pyrazole (3s)
Prepared from 3,5-di-p-tolyl-1H-pyrazole (1s, 124.2 mg). Purification by column chromatography (10% EtOAc/CH 2Cl 2) afforded 3s (99%, 150.5 mg) as a white solid.
Mp 186.5–188.5 °C; Rf = 0.58 (30% EtOAc/CH 2Cl 2).
IR (neat): 3185 (N–H), 2157 (C≡N) cm–1.
1H NMR (400 MHz, CDCl 3): δ = 7.99 (br s, 1 H), 7.56 (dd, J = 8.1 Hz, 4 H), 7.23 (d, J = 7.9 Hz, 4 H), 2.41 (s, 6 H).
13C NMR (100 MHz, CDCl 3): δ = 152.1 (2×C), 139.7 (2×C), 129.6 (4×CH), 128.1 (4×CH 2), 128.3 (4×CH), 111.9 (C), 92.8 (C), 92.6 (C), 21.4 (2×CH 3).

3.5-Bis(4-methoxyphenyl)-4-thiocyanato-1H-pyrazole (3t)
Prepared from 3,5-bis(4-methoxyphenyl)-1H-pyrazole (1t, 140.2 mg). Purification by column chromatography (10% EtOAc/CH 2Cl 2) afforded 3t (90%, 152.6 mg) as a white solid.
Mp 188.0–189.0 °C; \(R_f = 0.43\) (60% EtOAc/CH\(_2\)Cl\(_2\)).

IR (neat): 3154 (N–H), 2154 (C≡N).

1H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.57\) (d, \(J = 8.7\) Hz, 4 H), 6.89 (d, \(J = 8.7\) Hz, 4 H), 3.84 (s, 6 H).

13C NMR (100 MHz, CDCl\(_3\)): \(\delta = 160.5\) (2×C), 151.8 (2×C), 129.6 (4×CH), 121.1 (2×C), 114.3 (4×CH), 112.1 (C), 92.2 (C), 55.3 (2×CH\(_3\)).

HRMS (ESI-TOF): m/z [M + Na\(^+\)] calcd for C\(_{18}\)H\(_{15}\)N\(_3\)NaO\(_2\)S: 334.0182; found: 334.0182.

3,5-Bis(2-(benzyloxy)phenyl)-1H-pyrazole (3u)
Prepared from 3,5-bis(2-(benzyloxy)phenyl)-1H-pyrazole (1u, 140.2 mg). Purification by column chromatography (10% EtOAc/CH\(_2\)Cl\(_2\)) afforded 3u (84%), 142.5 mg as a pale-yellow solid.

1H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.44–7.42\) (m, 3 H), 7.42–7.29 (m, 12 H), 7.13–7.06 (m, 4 H), 5.11 (s, 4 H).

IR (neat): 3187 (N–H), 2155 (C≡N).

13C NMR (100 MHz, CDCl\(_3\)): \(\delta = 155.8\) (2×C), 147.6 (2×C), 136.2 (2×C), 130.7 (2×CH), 130.0 (2×CH), 128.3 (4×CH), 127.7 (2×CH), 126.8 (4×CH), 121.1 (2×CH), 118.4 (2×CH), 111.3 (C), 96.0 (C), 70.4 (2×CH).

HRMS (ESI-TOF): m/z [M + Na\(^+\)] calcd for C\(_{18}\)H\(_{15}\)N\(_3\)NaO\(_2\)S: 334.0182; found: 334.0182.

5-Phenyl-4-thiocyanato-3-(m-toly1)-1H-pyrazole (3w)
Prepared from 5-phenyl-3-(m-tolyl)-1H-pyrazole (1w, 117.2 mg). Purification by column chromatography (5% EtOAc/CH\(_2\)Cl\(_2\)) afforded 3w (99%, 242.2 mg) as a pale-yellow solid.

Mp 167.0–169.0 °C; \(R_f = 0.51\) (60% EtOAc/CH\(_2\)Cl\(_2\)).

IR (neat): 3187 (N–H), 2155 (C≡N) cm\(^{-1}\).

1H NMR (400 MHz, CDCl\(_3\)): \(\delta = 11.29\) (br s, 1 H), 7.83 (dd, \(J = 7.6, 1.6\) Hz, 2 H), 7.44–7.29 (m, 12 H), 7.13–7.06 (m, 4 H), 2.26 (s, 3 H).

13C NMR (100 MHz, CDCl\(_3\)): \(\delta = 155.8\) (2×C), 147.6 (2×C), 136.2 (2×C), 130.7 (2×CH), 130.0 (2×CH), 128.3 (4×CH), 127.7 (2×CH), 126.8 (4×CH), 121.1 (2×CH), 118.4 (2×CH), 111.3 (C), 96.0 (C), 70.4 (2×CH).

HRMS (ESI-TOF): m/z [M + H\(^+\)] calcd for C\(_{18}\)H\(_{15}\)N\(_3\)S: 292.0908; found: 292.0904.
13C NMR (100 MHz, CDCl3): δ = 152.8 (C), 151.9 (C), 129.6 (C), 129.3 (CH), 128.7 (2×CH), 128.0 (2×CH), 111.3 (C), 93.3 (C), 31.2 (CH2), 28.4 (CH2), 25.2 (CH2), 22.3 (CH2), 13.9 (CH3).

5-Benzyl-3-phenyl-4-thiocyanato-1H-pyrazole (3ab)
Prepared from 5-benzyl-3-phenyl-1H-pyrazole (1ab, 117.2 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded 3ab (88%, 127.8 mg) as a yellow solid.

Mp 121.5–122.5 °C; Rf = 0.52 (40% EtOAc/hexanes).

IR (neat): 3290 (O–H), 2157 (C≡N) cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.78 (s, 2 H), 7.68 (s, 2 H), 6.52 (br s, 1 H).

13C NMR (100 MHz, CDCl3): δ = 138.5 (2×CH), 111.2 (C), 98.1 (C). HRMS (ESI-TOF): m/z [M + Na]+ calcd for C17H13N3NaS: 314.0728; found: 314.0732.

4-Thiocyanato-1H-pyrazole (3af)
Prepared from pyrazole (1af, 34.0 mg). Purification by column chromatography (30% EtOAc/hexanes) afforded 3af (13%, 7.9 mg) as a white solid.

Mp 165.5–167.0 °C; Rf = 0.47 (50% EtOAc/hexanes).

IR (neat): 3211 (N–H), 2154 (C≡N) cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.87 (s, 2 H), 7.68 (s, 1 H), 3.94 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 143.2 (CH), 134.9 (CH), 111.2 (C), 97.0 (C), 39.5 (CH3).

1-Methyl-4-thiocyanato-1H-pyrazole (3ag)
Prepared from 1-methyl-1H-pyrazole (1ag, 41.0 mg). Product 3ag (57%, 42.6 mg) was afforded as a colorless liquid.

IR (neat): 2156 (C≡N) cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.71 (s, 1 H), 7.68 (s, 1 H), 3.94 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 143.2 (CH), 134.9 (CH), 111.2 (C), 97.0 (C), 39.5 (CH3).

Bis(3,5-dimethyl-4-thiocyanato-1H-pyrazol-1-yl)methane (3ai)
Prepared from bis(3,5-dimethyl-1H-pyrazol-1-yl)methane (1ai, 102.1 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded 3ai (89%, 141.1 mg) as colorless crystals.

Mp 87.5–89.5 °C; Rf = 0.40 (30% acetone/hexane).

IR (neat): 3211 (N–H), 2154 (C≡N) cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.72 (s, 1 H), 7.64 (s, 1 H), 7.41–7.36 (m, 3 H), 7.27–7.24 (m, 2 H), 5.30 (s, 1 H).

13C NMR (100 MHz, CDCl3): δ = 143.4 (CH), 134.7 (C), 134.1 (CH), 129.1 (2×CH), 128.7 (2×CH), 128.1 (2×CH), 111.2 (C), 97.6 (C), 56.9 (CH3).

1,3-Bis(3,5-dimethyl-4-thiocyanato-1H-pyrazol-1-yl)propane (3a)
Prepared from 1,3-bis(3,5-dimethyl-1H-pyrazol-1-yl)propane (1aj, 116.2 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded 3a (86%, 148.3 mg) as a white solid.

Mp 71.0–73.0 °C; Rf = 0.50 (100% EtOAc).

IR (neat): 3239 (O–H), 2158 (C≡N) cm⁻¹.

1H NMR (400 MHz, DMSO-d6): δ = 7.91 (d, J = 7.2 Hz, 2 H), 7.67 (br s, 1 H), 7.53–7.48 (m, 5 H), 7.47–7.43 (m, 2 H), 7.40–7.38 (m, 1 H), 3.81 (2×CH3).

13C NMR (100 MHz, DMSO-d6): δ = 157.8 (C), 154.2 (C), 151.1 (C), 133.0 (C), 131.1 (CH), 131.0 (2×CH), 129.8 (CH), 129.5 (2×CH), 129.3 (C), 129.2 (2×CH), 99.1 (C), 38.5 (CH3).

Synthesis of 5-((1-Methyl-3,5-diphenyl-1H-pyrazol-4-yl)carbamothioate (4a)²⁰
A solution of 1-methyl-3,5-diphenyl-4-thiocyanato-1H-pyrazole (3a, 145.7 mg, 0.5 mmol) in CH2Cl2 (2 mL) was added to concentrated sulfuric acid (0.8 mL). The resulting solution was stirred at 0 °C for 5 h. The reaction mixture was allowed to warm to r.t. and diluted with H2O (10 mL). The mixture was extracted with CH2Cl2 (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO4, filtered, and concentrated on a rotary evaporator.

Product 4a (91%, 148.2 mg) was obtained as a pale-yellow solid.

Mp 178.1–180.9 °C; Rf = 0.33 (100% EtOAc).

IR (neat): 1667 (C–N) cm⁻¹.

1H NMR (400 MHz, CD3OD): δ = 7.76–7.74 (m, 2 H), 7.48–7.36 (m, 8 H), 3.78 (s, 1 H). 2H; 7.02 (s, 1 H), 6.70–6.97 (m, 3 H), 6.75 (d, J = 8.2 Hz, 2 H), 3.80 (2×CH3).

13C NMR (100 MHz, CD3OD): δ = 147.9 (2×C), 147.8 (2×C), 133.3 (2×C), 128.5 (C), 121.1 (2×CH), 114.9 (4×CH), 112.0 (C), 110.8 (C), 109.5 (4×CH), 92.5 (C), 55.4 (2×CH3).

HRMS (ESI-TOF): m/z [M + H]+ calcd for C19H18N5O4S: 553.1497; found: 553.1497.

Funding Information
We thank the Thailand Research Fund (BRG5850012 and IRN58W00005), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Postgraduate Education Research Development Office, Office of the Higher Education Commission, Ministry of Education, Mahidol University under the National Research Universities Initiative, PIC56663 ISMA (France/Thailand), and the Franco–Thai Cooperation Program in Higher Education and Research (PHC Siam 2017) for financial support.

Acknowledgment
We also acknowledge the Institute for the Promotion of Teaching Science and Technology through the Development and Promotion of Science and Technology Talents Project (DPST), and Science Achievement

Synthesis of 1,3-Bis(3,5-dimethyl-4-thiocyanato-1H-pyrazol-4-yl)disulfane (6a)²⁰
A solution of 1-methyl-3,5-diphenyl-4-thiocyanato-1H-pyrazole (3a, 145.7 mg, 0.5 mmol) in anhydrous THF (2 mL) was added to a suspension of LiAlH4 (20.9 mg, 0.55 mmol) in anhydrous THF (4 mL) at 0 °C. The resulting mixture was stirred at r.t. overnight. After that time, water and 1.0 M HCl were added and the mixture was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO4, filtered, and concentrated on a rotary evaporator.

Purification by column chromatography (30–70% EtOAc/hexanes) afforded 6a (71%, 94.2 mg) as a pale-yellow solid.

Mp 223.5–224.0 °C; Rf = 0.57 (60% EtOAc/hexanes).

IR (neat): 1461 (C–N) cm⁻¹.

1H NMR (400 MHz, CDCl3): δ = 7.76 (dd, J = 7.9, 2.1 Hz, 2 H), 7.42–7.41 (m, 3 H), 7.36–7.34 (m, 3 H), 7.10 (dd, J = 7.5, 2.0 Hz, 2 H), 3.64 (s, 3 H).

13C NMR (100 MHz, CDCl3): δ = 152.7 (2×C), 148.7 (2×C), 132.1 (2×C), 128.9 (2×CH), 128.15 (2×C), 128.13 (6×CH), 128.0 (4×CH), 127.9 (2×CH), 107.5 (2×CH), 37.6 (2×CH3).

HRMS (ESI-TOF): m/z [M + H]+ calcd for C10H11N3S: 553.1497; found: 553.1579.
Scholarship of Thailand (SAST) for student scholarships to T.S. and O.K., respectively and the National Research Council of Thailand (NRCT) for a postdoctoral research assistantship to P.K.

Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591891.

References

