Synthesis 2018; 50(04): 764-771
DOI: 10.1055/s-0036-1591871
paper
© Georg Thieme Verlag Stuttgart · New York

Second-Generation Azafullerene Monoadducts as Electron Acceptors in Bulk Heterojunction Solar Cells

Michael Bothe
a   Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany   Email: max.vondelius@uni-ulm.de
,
María Pilar Montero-Rama
b   Department d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 16, 43007 Tarragona, Spain   Email: lluis.marsal@urv.cat
,
Aurélien Viterisi
b   Department d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 16, 43007 Tarragona, Spain   Email: lluis.marsal@urv.cat
,
Werther Cambarau
c   Institute of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans 26, 43007 Tarragona, Spain
,
Caterina Stenta
b   Department d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 16, 43007 Tarragona, Spain   Email: lluis.marsal@urv.cat
,
Emilio Palomares
c   Institute of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans 26, 43007 Tarragona, Spain
,
Lluis F. Marsal*
b   Department d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 16, 43007 Tarragona, Spain   Email: lluis.marsal@urv.cat
,
a   Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany   Email: max.vondelius@uni-ulm.de
› Author Affiliations
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (SFB 953, ‘Synthetic Carbon Allotropes’), the Daimler und Benz Stiftung (grant no. 32-12/13), the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) [TEC2015-71324-R and TEC2015-71915-REDT (MINECO/FEDER)], and the Catalan Institution for Research and Advanced Studies (ICREA) (ICREA ‘Academia Award’, AGAUR 2017 SGR 1527).
Further Information

Publication History

Received: 03 November 2017

Accepted: 27 November 2017

Publication Date:
11 January 2018 (online)


Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

Four new azafullerene monoadducts (DPS-C59N, HDP-C59N, DBOP-C59N, DHOP-C59N) have been prepared and applied as electron acceptors in solution-processed bulk heterojunction solar cells. The four compounds were designed so that their solubility in organic solvents was maximized and that structure–property comparisons could be drawn with a previously synthesized azafullerene electron acceptor. With the photovoltaic devices that were prepared from the four aza­fullerenes and polymeric electron donor PTB7 we found that only one of the four new electron acceptors resulted in a power conversion efficiency that exceeded the one observed with a previously reported aza­fullerene monoadduct. Atomic force microscopy and electron mobility measurements suggest that azafullerenes bearing two alkyl chains lead to non-optimal film morphologies as well as electron mobilities and that future efforts should focus on single n-alkyl substitution.

Supporting Information

 
  • References

    • 1a von Delius M. Hirsch A. In Chemical Synthesis and Applications of Graphene and Carbon Materials . Antonietti M. Müllen K. Wiley-VCH; Weinheim: 2017: 191
    • 1b Vostrowsky O. Hirsch A. Chem. Rev. 2006; 106: 5191
  • 2 Hummelen JC. Knight B. Pavlovich J. González R. Wudl F. Science 1995; 269: 1554
    • 3a Kumashiro R. Tanigaki K. Ohashi H. Tagmatarchis N. Kato H. Shinohara H. Akasaka T. Kato K. Aoyagi S. Kimura S. Takata M. Appl. Phys. Lett. 2004; 84: 2154
    • 3b Fei X. Neilson J. Li Y. Lopez V. Garrett SJ. Gan L. Gao H.-J. Gao L. Nano Lett. 2017; 17: 2887
    • 3c Hashikawa Y. Murata M. Wakamiya A. Murata Y. J. Am. Chem. Soc. 2016; 138: 4096
    • 3d Coro J. Suárez M. Silva LS. R. Eguiluz KI. B. Salazar-Banda GR. Int. J. Hydrogen Energy 2016; 41: 17944
    • 3e Rotas G. Tagmatarchis N. Chem. Eur. J. 2016; 22: 1206
    • 3f Kaneko T. Li Y. Nishigaki S. Hatakeyama R. J. Am. Chem. Soc. 2008; 130: 2714
    • 4a Bellavia-Lund C. González R. Hummelen JC. Hicks RG. Sastre A. Wudl F. J. Am. Chem. Soc. 1997; 119: 2946
    • 4b Nuber B. Hirsch A. Chem. Commun. 1998; 405
    • 4c Hauke F. Hirsch A. Tetrahedron 2001; 57: 3697
    • 4d Vougioukalakis GC. Roubelakis MM. Orfanopoulos M. J. Org. Chem. 2010; 75: 4124
    • 4e von Delius M. Hauke F. Hirsch A. Eur. J. Org. Chem. 2008; 4109
    • 4f Roubelakis MM. Vougioukalakis GC. Nye LC. Drewello T. Orfanopoulos M. Tetrahedron 2010; 66: 9363
    • 4g Hauke F. Vostrowsky O. Hirsch A. Quaranta A. Leibl W. Leach S. Edge R. Navaratnam S. Bensasson RV. Chem. Eur. J. 2006; 12: 4813
    • 4h Vougioukalakis GC. Hatzimarinaki M. Lykakis IN. Orfanopoulos M. J. Org. Chem. 2006; 71: 829
    • 4i Fu W. Zhang J. Fuhrer T. Champion H. Furukawa K. Kato T. Mahaney JE. Burke BG. Williams KA. Walker K. Dixon C. Ge J. Shu C. Harich K. Dorn HC. J. Am. Chem. Soc. 2011; 133: 9741
    • 5a Hirsch A. Brettreich M. Fullerenes – Chemistry and Reactions . Wiley-VCH; Weinheim: 2004
    • 5b Fullerenes: Principles and Applications . 2nd ed.; Langa F. Nierengarten J.-F. RSC Publishing; Cambridge: 2011
  • 6 PCBM = [6,6]-phenyl-C61-butyric acid methyl ester.
  • 7 Hummelen JC. Knight BW. LePeq F. Wudl F. Yao J. Wilkins CL. J. Org. Chem. 1995; 60: 532
    • 8a Dang MT. Hirsch L. Wantz G. Adv. Mater. 2011; 23: 3597
    • 8b Deibel C. Dyakonov V. Rep. Prog. Phys. 2010; 73: 096401
    • 8c Cai W. Gong X. Cao Y. Sol. Energy Mater. Sol. Cells 2010; 94: 114
    • 8d Mishra A. Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
    • 8e Ameri T. Li N. Brabec CJ. Energy Environ. Sci. 2013; 6: 2390
    • 8f Ameri T. Khoram P. Brabec CJ. Adv. Mater. 2013; 25: 4245
    • 8g Darling SB. You F. RSC Adv. 2013; 3: 17633
    • 8h Mazzio KA. Luscombe CK. Chem. Soc. Rev. 2015; 44: 78
    • 8i Kang H. Kim G. Kim J. Kwon S. Kim H. Lee K. Adv. Mater. 2016; 28: 7821
    • 8j Heeger AJ. Adv. Mater. 2014; 26: 10
    • 8k Delgado JL. Bouit P.-A. Filippone S. Herranz MÁ. Martín N. Chem. Commun. 2010; 46: 4853
    • 8l He Y. Li Y. Phys. Chem. Chem. Phys. 2011; 13: 1970
    • 8m Ganesamoorthy R. Sathiyan G. Sakthivel P. Sol. Energy Mater. Sol. Cells 2017; 161: 102
    • 8n Li Y. Chem. Asian J. 2013; 8: 2316
    • 8o Morinaka Y. Nobori M. Murata M. Wakamiya A. Sagawa T. Yoshikawa S. Murata Y. Chem. Commun. 2013; 49: 3670
    • 8p Schroeder BC. Li Z. Brady MA. Faria GC. Ashraf RS. Takacs CJ. Cowart JS. Duong DT. Chiu KH. Tan C.-H. Cabral JT. Salleo A. Chabinyc ML. Durrant JR. McCulloch I. Angew. Chem. Int. Ed. 2014; 53: 12870
    • 8q Wienk MM. Kroon JM. Verhees WJ. H. Knol J. Hummelen JC. van Hal PA. Janssen RA. J. Angew. Chem. Int. Ed. 2013; 42: 3371
    • 9a Lin Y. Zhan X. Mater. Horiz. 2014; 1: 470
    • 9b Zhan C. Zhang X. Yao J. RSC Adv. 2015; 5: 93002
    • 9c Kim T. Kim J.-H. Kang TE. Lee C. Kang H. Shin M. Wang C. Ma B. Jeong U. Kim T.-S. Kim BJ. Nat. Commun. 2015; 6: 8547
    • 9d Bin H. Gao L. Zhang Z.-G. Yang Y. Zhang Y. Zhang C. Chen S. Xue L. Yang C. Xiao M. Li Y. Nat. Commun. 2016; 7: 13651
    • 9e Holliday S. Ashraf RS. Wadsworth A. Baran D. Yousaf SA. Nielsen CB. Tan C.-H. Dimitrov SD. Shang Z. Gasparini N. Alamoudi M. Laquai F. Brabec CJ. Salleo A. Durrant JR. McCulloch I. Nat. Commun. 2016; 7: 11585
    • 9f Fan Y. Barlow S. Zhang S. Lin B. Marder SR. RSC Adv. 2016; 6: 70493
    • 9g Bin H. Zhang Z.-G. Gao L. Chen S. Zhong L. Xue L. Yang C. Li Y. J. Am. Chem. Soc. 2016; 138: 4657
    • 9h Eftaiha AF. Sun J.-P. Hill IG. Welch GC. J. Mater. Chem. A 2014; 2: 1201
    • 9i Fernández-Lázaro F. Zink-Lorre N. Sastre-Santos Á. J. Mater. Chem A. 2016; 4: 9336
    • 9j Li S. Liu W. Li C.-Z. Shi M. Chen H. Small 2017; 13: 1701120
    • 9k Liang N. Jiang W. Hou J. Wang Z. Mater. Chem. Front. 2017; 1: 1291
    • 9l Kuzmich A. Padula D. Ma H. Troisi A. Energy Environ. Sci. 2017; 10: 395
    • 9m Li S. Zhang Z. Shi M. Li C.-Z. Chen H. Phys. Chem. Chem. Phys. 2017; 19: 3440
  • 10 Cambarau W. Fritze UF. Viterisi A. Palomares E. von Delius M. Chem. Commun. 2015; 51: 1128
  • 11 Xiao Z. He D. Zuo C. Gan L. Ding L. RSC Adv. 2014; 4: 24029
  • 12 Wessendorf CD. Eigler R. Eigler S. Hanisch J. Hirsch A. Ahlswede E. Sol. Energy Mater. Sol. Cells 2015; 132: 450
    • 13a Fernández D. Viterisi A. Ryan JW. Gispert-Guirado F. Vidal S. Filippone S. Martín N. Palomares E. Nanoscale 2014; 6: 5871
    • 13b Heremans P. Cheyns D. Rand BP. Acc. Chem. Res. 2009; 42: 1740
    • 13c Sajjad MT. Ward AJ. Kästner C. Ruseckas A. Hoppe H. Samuel ID. W. J. Phys. Chem. Lett. 2015; 6: 3054
    • 13d Dang MT. Hirsch L. Wantz G. Wuest JD. Chem. Rev. 2013; 113: 3734
    • 13e Zhang P. Li C. Li Y. Yang X. Chen L. Xu B. Tian W. Tu Y. Chem. Commun. 2013; 49: 4917
    • 13f Faist MA. Shoaee S. Tuladhar S. Dibb GF. A. Foster S. Gong W. Kirchartz T. Bradley DD. C. Durrant JR. Nelson J. Adv. Energy Mater. 2013; 3: 744
  • 14 PTB7 = poly([4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b′)dithiophene-2,6-diyl]{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno-[3,4-b]thiophenediyl)
    • 15a Liang Y. Xu Z. Xia J. Tsai S.-T. Wu Y. Li G. Ray C. Yu L. Adv. Mater. 2010; 22: E135
    • 15b He Z. Zhong C. Su S. Xu M. Wu H. Cao Y. Nat. Photonics 2012; 6: 591
    • 15c Liu F. Zhao W. Tumbleston JR. Wang C. Gu Y. Wang D. Briseno AL. Ade H. Russell TP. Adv. Energy Mater. 2014; 4: 1301377
    • 15d Guo S. Ning J. Körstgens V. Yao Y. Herzig EM. Roth SV. Müller-Buschbaum P. Adv. Energy Mater. 2015; 5: 1401315
    • 15e Guerrero A. Montcada NF. Ajuria J. Etxebarria I. Pacios R. Garcia-Belmonte G. Palomares E. J. Mater. Chem. A 2013; 1: 12345
    • 15f Lu L. Yu L. Adv. Energy Mater. 2014; 26: 4413
    • 15g Park S. Jeong J. Hyun G. Kim M. Lee H. Yi Y. Sci. Rep. 2016; 6: 35262
    • 15h Cho S. Rolczynski BS. Xu T. Yu L. Chen LX. J. Phys. Chem. B 2015; 119: 7447
    • 16a Kaake L. Dang X.-D. Leong WL. Zhang Y. Heeger A. Nquyen T.-Q. Adv. Mater. 2013; 25: 1706
    • 16b Usluer Ö. Abbas M. Wantz G. Vignau L. Hirsch L. Grana E. Brochon C. Cloutet E. Hadziioannou G. ACS Macro Lett. 2014; 3: 1134
    • 16c Nikiforov MP. Lai B. Chen S. Schaller RD. Strzalka J. Maser J. Darling SB. Energy Environ. Sci. 2013; 6: 1513
    • 16d Cowan SR. Leong WL. Banerji N. Dennler G. Heeger AJ. Adv. Funct. Mater. 2011; 21: 3083
    • 17a Xu Z. Chen L.-M. Yang G. Huang C.-H. Hou J. Wu Y. Li G. Hsu C.-S. Yang Y. Adv. Funct. Mater. 2009; 19: 1227
    • 17b Ruderer MA. Guo S. Meier R. Chiang H.-Y. Körstgens V. Wiedersich J. Perlich J. Roth SV. Müller-Buschbaum P. Adv. Funct. Mater. 2011; 21: 3382
    • 18a Mihailetchi VD. van Duren JK. J. Blom PW. M. Hummelen JC. Janssen RA. J. Kroon JM. Rispens MT. Verhees WJ. H. Wienk MM. Adv. Funct. Mater. 2003; 13: 43
    • 18b Blom PW. M. Mihailetchi VD. Koster LJ. A. Markov DE. Adv. Mater. 2007; 19: 1551
  • 19 Salvatore RN. Smith RA. Nischwitz AK. Gavin T. Tetrahedron Lett. 2005; 46: 8931
  • 20 Guo X. Ortiz RP. Zheng Y. Kim M.-G. Zhang S. Hu Y. Lu G. Facchetti A. Marks TJ. J. Am. Chem. Soc. 2011; 133: 13685
  • 21 Zhang Q. Peng H. Zhang G. Lu Q. Chang J. Dong Y. Shi X. Wei J. J. Am. Chem. Soc. 2014; 136: 5057