Synthesis 2018; 50(04): 853-858
DOI: 10.1055/s-0036-1591852
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Acetylenic Amides with Propyllactam Moieties by In Situ DBU or DBN Ring-Opening Rearrangement in the Presence of Acetylenic Esters

Olesya A. Shemyakina
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
,
Olga G. Volostnykh
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
,
Anton V. Stepanov
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
,
Anastasiya G. Mal’kina
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
,
Igor A. Ushakov
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
,
Boris A. Trofimov*
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russian Federation   Email: boris_trofimov@irioch.irk.ru
› Author Affiliations
Further Information

Publication History

Received: 21 July 2017

Accepted after revision: 07 November 2017

Publication Date:
07 December 2017 (online)


Abstract

DBN (1,5-diazabicyclo[4.3.0]non-5-ene) and DBU (1,8-diaza­bicyclo[5.4.0]undec-7-ene) react with methyl esters of acetylenic acids and excess water (the reactant molar ratio 1:1, in aqueous MeCN, at 20–25 °C, for 48 h) to afford acetylenic amides with pyrrolidone and caprolactam moieties in 89–100% yields. The synthesis involves amines formed in situ from the cyclic amidines, which further react with acetylenic esters.

Supporting Information

 
  • References

    • 1a Savoca, A. C.; Urgaonkar, S.; 1,8-Diazabicyclo[5.4.0]undec-7-ene, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, 2006, DOI: 10.1002/047084289X.rd011.pub2.
    • 1b Ishikawa T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. John Wiley & Sons; London: 2009
    • 1c Taylor JE. Bull SD. Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 1d Nand B. Khanna G. Chaudhary A. Lumb A. Khurana JM. Curr. Org. Chem. 2015; 19: 790
    • 2a McCoy LL. Mal D. J. Org. Chem. 1981; 46: 1016
    • 2b Juneja TR. Garg DK. Schafer W. Tetrahedron 1982; 38: 551
    • 2c Perbost M. Lucas M. Chavis C. Imbach J.-L. J. Heterocycl. Chem. 1993; 30: 627
    • 2d Lammers H. Cohen-Fernandes P. Habraken CL. Tetrahedron 1994; 50: 865
    • 2e Chambers RD. Roche AJ. Batsanov AS. Howard JA. K. J. Chem. Soc., Chem. Commun. 1994; 2055
    • 2f Ma L. Dolphin D. Tetrahedron 1996; 52: 849
    • 2g Johnson MG. Foglesong RJ. Tetrahedron Lett. 1997; 38: 7003
    • 2h Sutherland JK. Chem. Commun. 1997; 325
    • 2i Kraft A. J. Chem. Soc., Perkin Trans. 1 1999; 705
    • 2j Lonnqvist J.-ES. Jalander LF. J. Chem. Res., Synop. 2000; 102
    • 2k Im YJ. Gong JH. Kim HJ. Kim JN. Bull. Korean Chem. Soc. 2001; 22: 1053
    • 2l Page PC. B. Vahedi H. Bethell D. Barkley JV. Synth. Commun. 2003; 33: 1937
    • 2m Gierczyk B. Schroeder G. Brzezinski B. J. Org. Chem. 2003; 68: 3139
    • 2n Heldebrant DJ. Jessop PG. Thomas CA. Eckert CA. Liotta CL. J. Org. Chem. 2005; 70: 5335
    • 2o Gryko DT. Piechowska J. Tasior M. Waluk J. Orzanowska G. Org. Lett. 2006; 8: 4747
    • 2p Nirmala R. Ponpandian T. Venkatraman BR. Rajagopal S. Tetrahedron Lett. 2013; 54: 5181
    • 2q Mishra R. Panini P. Sankar J. Org. Lett. 2014; 16: 3994
    • 2r Baravkar SB. Roy A. Gawade RL. Puranik VG. Sanjayan GJ. Synth. Commun. 2014; 44: 2955
    • 2s Poronik YM. Gryko DT. Chem. Commun. 2014; 5688
    • 2t Chen J. Natte K. Wu X.-F. Tetrahedron Lett. 2015; 56: 342
    • 2u Parhizkar G. Khosropour AR. Mohammadpoor-Baltork I. Parhizkar E. Rudbari HA. Tetrahedron 2017; 73: 1397
    • 3a Ma L. Dolphin D. J. Chem. Soc., Chem. Commun. 1995; 2251
    • 3b Nie L.-Q. Shi Z.-J. Cao W.-Q. Bopuxue Zazhi 2002; 19: 377
    • 3c Shi Z. Nie L. Fenxi Huaxue 2003; 31: 573
    • 3d Shi Z.-J. Nie L.-Q. Cao W.-Q. Fenxi Kexue Xuebao 2004; 20: 586
    • 3e Vangala M. Shinde GP. Beilstein J. Org. Chem. 2016; 12: 2086
    • 3f Trofimov BA. Shemyakina OA. Mal’kina AG. Stepanov AV. Volostnykh OG. Ushakov IA. Vashchenko AV. Eur. J. Org. Chem. 2016; 5465
    • 4a Trofimov BA. Skvortsov YuM. Mal’kina AG. Gritsa AI. Zh. Org. Khim. 1985; 21: 2020; Chem. Abstr. 1986, 105, 78491s
    • 4b Trofimov BA. Mal’kina AG. Gritsa AI. Skvortsov YuM. Stankevich VK. Sokolyanskaya LV. Zh. Obshch. Khim. 1996; 66: 106 ; Chem. Abstr. 1997, 126, 18567v
    • 5a Dagne E. Castagnoli Jr N. J. Med. Chem. 1972; 15: 840
    • 5b Schwartz BD. De Voss JJ. Tetrahedron Lett. 2001; 42: 3653
    • 5c Lim K.-H. Raja VJ. Bradshaw TD. Lim S.-H. Low Y.-Y. Kam T.-S. J. Nat. Prod. 2015; 78: 1129
    • 5d Cai P. Kong F. Ruppen ME. Glasier G. Carter GT. J. Nat. Prod. 2005; 68: 1736
    • 5e Beatte KD. Ellwood N. Kumar R. Yang X. Healy PC. Choomuenwai V. Quinn RJ. Elliott AG. Huang JX. Chitty JL. Fraser JA. Cooper MA. Davis RA. Phytochemistry 2016; 124: 79
    • 5f Maebayashi Y. Yamazaki M. Chem. Pharm. Bull. 1985; 33: 4296
    • 6a Kinder FR. Jr. Versace RW. Bair KW. PCT Int. Appl WO 2001085697 A1, 2001
    • 6b Liu G. Ma Y.-M. Tai W.-Y. Xie C.-M. Li Y.-L. Li J. Nan F.-J. ChemMedChem 2008; 3: 74
    • 7a Fox DJ. Reckless J. Wibert SM. Greig I. Warren S. Grainger DJ. J. Med. Chem. 2005; 48: 867
    • 7b Fox DJ. Reckless J. Lingard H. Warren S. Grainger DJ. J. Med. Chem. 2009; 52: 3591
    • 7c Grainger DJ. Fox DJ. PCT Int. Appl US 2010/0016286 A1, 2010
    • 8a Winn M. Goss RJ. M. Kimura K.-i. Bugg TD. H. Nat. Prod. Rep. 2010; 27: 279
    • 8b Dubuisson T. Bogatcheva E. Krishnan MY. Collins MT. Einck L. Nacy CA. Reddy VM. J. Antimicrob. Chemother. 2010; 65: 2590
    • 9a Kitas EA. Galley G. Jakob-Roetne R. Flohr A. Wostl W. Mauser H. Alker AM. Czech C. Ozmen L. David-Pierson P. Reinhardt D. Jacobsen H. Bioorg. Med. Chem. Lett. 2008; 18: 304
    • 9b Neitzel ML. Aubele DL. Marugg JL. Jagodzinski JJ. Konradi AW. Pleiss MA. Szoke B. Zmolek W. Goldbach E. Quinn KP. Sauer J.-M. Brigham EF. Wallace W. Bova MP. Hemphill S. Basi G. Bioorg. Med. Chem. Lett. 2011; 21: 3715
  • 10 Marquis RW. Ru Y. LoCastro SM. Zeng J. Yamashita DS. Oh H.-J. Erhard KF. Davis LD. Tomaszek TA. Tew D. Salyers K. Proksch J. Ward K. Smith B. Levy M. Cummings MD. Haltiwanger RC. Trescher G. Wang B. Hemling ME. Quinn CJ. Cheng H-Y. Lin F. Smith WW. Janson CA. Zhao B. McQueney MS. D’Alessio K. Lee C.-P. Marzulli A. Dodds RA. Blake S. Hwang S.-M. James IE. Gress CJ. Bradley BR. Lark MW. Gowen M. Veber DF. J. Med. Chem. 2001; 44: 1380
    • 11a Işıklan N. İnal M. Yiğitoğlu M. J. Appl. Polym. Sci. 2008; 110: 481
    • 11b Madhusudana RaoK. Krishna RaoK. S. V. Sudhakar P. Chowdoji RaoK. Subha MC. S. J. Appl. Pharm. Sci. 2013; 3: 61
    • 11c Voicu G. Grumezescu V. Andronescu E. Grumezescu AM. Ficai A. Ficai D. Ghitulica D. Gheorghe I. Chifiriuc MC. Int. J. Pharm. 2013; 446: 63
  • 12 Vávrová K. Zbytovská J. Hrabálek A. Curr. Med. Chem. 2005; 12: 2273
    • 13a Cota L. Chimentao R. Sueiras J. Medina F. Catal. Commun. 2008; 9: 2090
    • 13b Yuan H. Zhang J. J. Comput. Chem. 2015; 36: 1295
    • 14a Kraft A. J. Chem. Soc., Perkin Trans. 1 1999; 705
    • 14b Shi M. Shen Y. Helv. Chim. Acta 2002; 85: 1355
    • 14c Goncalves RS. Abdelnur PV. Santoc VG. Simas RC. Eberlin MN. Magalhaes A. Perez Gonzalez ER. Amino Acids 2011; 40: 197