Synlett 2018; 29(09): 1167-1170
DOI: 10.1055/s-0036-1591770
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Synthesis of [60]Fullerene Multiadducts through Dicyclohexylcarbodiimide (DCC) Mediated Reactions

Hao Zhang
a   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: gan@pku.edu.cn
,
Yanbang Li
a   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: gan@pku.edu.cn
,
Liangbing Gan*
a   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: gan@pku.edu.cn
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. of China
› Author Affiliations
This work is supported by NNSFC (Grant 21672009) and MOST (2015CB856600).
Further Information

Publication History

Received: 03 January 2018

Accepted after revision: 08 February 2018

Publication Date:
27 February 2018 (online)


Abstract

4-Methylpiperidine (MePi) reacts with C60 in the presence of DCC to form C60(MePi)4(DCC). The DCC moiety in the C60 derivative facilitates facile replacement reactions with thiols and phenols to form pentathiolyl derivatives C60(RS)5(H) and benzofuran-containing C60 derivatives such as C60(MePi)2(OC6H4), respectively.

Supporting Information

 
  • References and Notes


    • For example:
    • 1a Boudon C. Gisselbrecht J.-P. Gross M. Isaacs L. Anderson HL. Faust R. Diederich F. Helv. Chim. Acta 1995; 78: 1334
    • 1b Cerón MR. Izquierdo M. Pi Y. Atehortúa SL. Echegoyen L. Chem. Eur. J. 2015; 21: 7881
    • 1c Chen MQ. Bao LP. Peng P. Zheng SS. Xie YP. Lu X. Angew. Chem. Int. Ed. 2016; 55: 11887
    • 1d Bottari G. Trukhina O. Kahnt A. Frunzi M. Murata Y. Rodríguez-Fortea A. Poblet JM. Guldi DM. Torres T. Angew. Chem. Int. Ed. 2016; 55: 11020
    • 2a Schwenninger R. Müller T. Krautler B. J. Am. Chem. Soc. 1997; 119: 9317
    • 2b Peng P. Li F.-F. Bowles FL. Neti VS. P. K. Metta-Magana AJ. Olmstead MM. Balch AL. Echegoyen L. Chem. Commun. 2013; 49: 3209
  • 3 Birkett PR. Avent AG. Darwish AD. Kroto HW. Taylor R. Walton DR. M. J. Chem. Soc., Chem. Commun. 1993; 1230
    • 4a Schick G. Kampe K.-D. Hirsch A. J. Chem. Soc., Chem. Commun. 1995; 2023
    • 4b Isobe H. Ohbayashi A. Sawamura M. Nakamura E. J. Am. Chem. Soc. 2000; 122: 2669
    • 4c Isobe H. Tomita N. Nakamura E. Org. Lett. 2000; 2: 3663
    • 4d Isobe H. Tanaka T. Nakanishi W. Lemiègre L. Nakamura E. J. Org. Chem. 2005; 70: 4826
    • 4e Lemiègre L. Tanaka T. Nanao T. Isobe H. Nakamura E. Chem. Lett. 2007; 36: 20
    • 4f Troshina OA. Troshin PA. Peregudov AS. Kozlovski VI. Lyubovskaya RN. Chem. Eur. J. 2006; 12: 5569
    • 4g Li YB. Gan LB. J. Org. Chem. 2014; 79: 8912
    • 5a Sawamura M. Iikura H. Nakamura E. J. Am. Chem. Soc. 1996; 118: 12850
    • 5b Matsuo Y. Nakamura E. Chem. Rev. 2008; 108: 3016
    • 6a Gan LB. Huang SH. Zhang XA. Zhang AX. Cheng BC. Cheng H. Li XL. Shang G. J. Am. Chem. Soc. 2002; 124: 13384
    • 6b Gan LB. Yang DZ. Zhang QY. Huang H. Adv. Mater. 2010; 22: 1498
    • 6c Gan LB. Chem. Rec. 2015; 15: 189
    • 7a Avent AG. Birkett PR. Darwish AD. Houlton S. Taylor R. Thomson KS. T. Wei X.-W. J. Chem. Soc., Perkin Trans. 2 2001; 782
    • 7b Kornev AB. Khakina EA. Troyanov SI. Kushch AA. Peregudov A. Vasilchenko A. Deryabin DG. Martynenko VM. Troshin PA. Chem. Commun. 2012; 48: 5461
    • 7c Khakina EA. Yurkova AA. Peregudov AS. Troyanov SI. Trush VV. Vovk AI. Mumyatov AV. Martynenko VM. Balzarinie J. Troshin PA. Chem. Commun. 2012; 48: 7158
    • 7d Deng LL. Xie SL. Yuan C. Liu RF. Feng J. Sun LC. Lu X. Xie SY. Huang RB. Zheng L.-S. Sol. Energy Mater. Sol. Cells 2013; 111: 193
    • 8a Liang SS. Xu L. Gan LB. Eur. J. Org. Chem. 2016; 3070
    • 8b Li YB. Xu D. Gan LB. Angew. Chem. Int. Ed. 2016; 55: 2483
  • 9 Li YB. Lou N. Gan LB. Org. Lett. 2015; 17: 524
  • 10 For a recent example, see: Zhang W.-X. Li DZ. Wang ZT. Xi ZF. Organometallics 2009; 28: 882
  • 11 Experimental Procedures and Characterization Data for Compound 1A solution of C60 (72 mg, 0.1 mmol) in 5 mL of orthodichlorobenzene (oDCB) was stirred at 35 °C. Then dicyclohexylcarbodiimide (DCC, 824 mg, 4 mmol) and 4-methylpiperidine (0.24 mL, 2 mmol) were added into the solution. The resulting mixture was stirred at 35 °C for 40 min. The solution was directly chromatographed on a silica gel column eluting with petroleum ether (60–90 °C) to remove oDCB. Eluting with toluene/ethyl acetate (100:1) gave a little orange byproduct as the known tetra-additional fullerene epoxide and another main orange band as compound 1 (85.7 mg, 0.065 mmol, 65%).Characterization Data 1H NMR (500 MHz, CDCl2CDCl2): δ = 3.92–3.71 (m, 8 H), 2.87–2.68 (m 8 H), 2.19 (d, J = 9.6 Hz, 2 H), 1.92 (d, J = 5.2 Hz, 4 H), 1.83–1.79 (m, 16 H), 1.51–1.30 (m, 20 H), 1.07–1.02 (m, 12 H). 13C NMR (126 MHz, CDCl2CDCl2): δ = 152.25, 149.42, 148.93, 148.63, 148.55, 148.07, 147.73, 147.52, 147.41, 147.39, 147.05, 146.88, 146.56, 146.47, 146.27, 145.84, 145.82, 145.58, 145.45, 145.16, 144.52, 143.51, 143.43, 143.32, 142.44, 142.37, 77.58, 75.93, 71.41, 68.46, 55.74 (N-CH), 53.33 (NCH), 52.20 (NCH2), 51.33 (NCH2), 50.38 (NCH2), 35.84 (CH2), 35.37 (CH2), 35.30 (CH2), 35.04 (CH2), 34.87 (CH2), 30.76 (CH), 30.61 (CH), 25.97 (CH2), 25.71 (CH2), 25.52 (CH2), 25.24 (CH2), 21.96 (CH3) (signals for the four CH groups in the 4-methylpiperidinyl rings and the CH2 groups in the 23–25 ppm region could not be assigned conclusively because of presence of minor impurities (see attached spectrum, impurity signals: δ = 30.92, 29.71, 25.63, 24.75, 21.17, 21.13 ppm.) ESI-FT-ICR-HRMS-Positive: m/z calcd for C97H71N6[M + H+]: 1319.5757; found: 1319.5735.
    • 12a Abd-Elzaher MM. Fischer H. J. Organomet. Chem. 1999; 588: 235
    • 12b Xu XL. Cheng DP. Li JH. Guo HY. Yan J. Org. Lett. 2007; 9: 1585
  • 13 Experimental Procedures and Characterization Data for Compound 3aA solution of compound 1 (36.6 mg, 0.028 mmol) in 10 mL of toluene was stirred at 60 °C. Then ethanethiol (0.04 mL, 0.54 mmol) was added into the solution. The resulting mixture was stirred at 60 °C for 5 h. The solution was directly chromatographed on a silica gel column eluting with toluene to give the orange band as compound 3a (22.8 mg, 0.022 mmol, 80%).Characterization Data 1H NMR (400 MHz, CDCl3): δ = 5.12 (s, 1 H), 3.37–3.23 (m, 10 H), 1.48–1.43 (m, 15 H). 13C NMR (126 MHz, CDCl3): δ = 154.25, 153.10, 151.12, 150.22, 148.88, 148.77, 148.61, 148.40, 148.26, 148.23, 148.06, 147.71, 146.96, 146.90, 146.67, 145.29, 145.18, 144.74, 144.50, 144.37, 144.27, 144.21, 144.02, 143.43, 143.37, 143.29, 143.25 (C60), 60.46 (CH), 56.70, 56.06, 54.15, 28.40 (CH2), 27.87 (CH2), 27.73 (CH2), 15.15 (CH3), 15.13 (CH3), 14.51 (CH3).
  • 14 Experimental Procedures and Characterization Data for Compound 4aA solution of compound 1 (224.2 mg, 0.17 mmol) in 50 mL of toluene was stirred at 60 °C. Then phenol (320 mg, 3.3 mmol) was added into the solution. The resulting mixture was stirred at 60 °C for 2 d. The solution was directly chromatographed on a silica gel column eluting with toluene to give the brown band as compound 4a (48.1 mg, 0.048 mmol, 28%), several other minor byproducts could not be separated.Characterization Data 1H NMR (500 MHz, CDCl3): δ = 7.57 (dd J = 0.9, 7.5 Hz, 1 H), 7.44–7.41 (m, 1 H) 7.25 (d, J = 8.1 Hz, 1 H), 7.11–7.08 (m, 1 H), 4.00 (d, J = 11.0 Hz, 1 H), 3.95 (d, J = 10.5 Hz, 1 H), 3.74 (d, J = 10.7 Hz, 1 H), 3.65 (d, J = 10.8 Hz, 1 H), 3.08–3.04 (m, 1 H), 2.93–2.81 (m, 3 H), 1.95–1.93 (m, 1 H), 1.82–1.80 (m, 2 H), 1.68–1.65 (m, 3 H), 1.56–1.54 (m, 2 H), 1.38–1.36 (m, 2 H), 1.04 (d, J = 5.8 Hz, 3 H), 1.00 (d, J = 6.5 Hz, 3 H). 13C NMR (126 MHz, CDCl2CDCl2): δ = 157.91, 153.74, 152.52, 152.30, 151.50, 150.48, 150.04, 149.82, 149.44, 149.20, 149.08, 148.87, 148.77, 147.98, 147.70, 147.63, 147.49, 147.17, 146.94, 146.85, 146.62, 146.58, 146.33, 145.91, 145.79, 145.73, 145.52, 145.38, 145.16, 145.02, 144.97, 144.82, 144.73, 144.69, 144.52, 144.24, 144.08, 144.04, 143.89, 143.85, 143.69, 143.33, 143.14, 143.12, 142.72, 142.59, 142.37, 141.70, 140.96, 139.83, 138.98, 136.73, 134.57, 134.18, 130.60 (CH), 126.81, 124.90 (CH), 121.97 (CH), 111.32 (CH), 100.75, 77.49, 74.65, 71.21, 65.54, 51.52 (NCH2), 51.07 (NCH2), 50.27 (NCH2), 49.28 (NCH2), 35.41 (CH2), 35.27 (CH2), 35.14 (CH2), 35.11 (CH2), 30.86 (CH), 30.77 (CH), 22.14 (CH3), 22.04 (CH3). ESI-FT-ICR-HRMS-Positive: m/z calcd for C78H29N2O [M + H+]: 1009.2255; found: 1009.2274.
    • 15a Avent AG. Birkett PR. Darwish AD. Kroto HW. Taylor R. Walton DR. M. Chem. Commun. 1997; 1579
    • 15b Darwish AD. Avent AG. Kroto HW. Taylor R. Walton DR. M. J. Chem. Soc., Perkin Trans. 2 1999; 1983
    • 16a Kadish KM. Gao X. Van Caemelbecke E. Suenobu T. Fukuzumi S. J. Am. Chem. Soc. 2000; 122: 563
    • 16b Nambo M. Wakamiya A. Yamaguchi S. Itami K. J. Am. Chem. Soc. 2009; 131: 15112
    • 16c Xiao Z. Wang FD. Huang SH. Gan LB. Zhou J. Yuan G. Lu MJ. Pan JQ. J. Org. Chem. 2005; 70: 2060
    • 16d Li Z.-J. Li S.-H. Sun T. Gao X. J. Org. Chem. 2014; 79: 197