Synlett 2018; 29(12): 1589-1592
DOI: 10.1055/s-0036-1591582
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free One-Pot Synthesis of Novel Heteroarylamine Substituted Furo[3,2-c]coumarins

Abolfazl Olyaei*
Department of Chemistry, Payame Noor University (PNU), PO BOX 19395-4697, Tehran, Iran   Email: Olyaei_a@pnu.ac.ir
,
Mahnaz Saraei
Department of Chemistry, Payame Noor University (PNU), PO BOX 19395-4697, Tehran, Iran   Email: Olyaei_a@pnu.ac.ir
,
Reyhaneh Khoeiniha
Department of Chemistry, Payame Noor University (PNU), PO BOX 19395-4697, Tehran, Iran   Email: Olyaei_a@pnu.ac.ir
› Author Affiliations
The authors thank the Research Council of Payame Noor University for financial support.
Further Information

Publication History

Received: 17 March 2018

Accepted after revision: 08 April 2018

Publication Date:
17 May 2018 (online)


Abstract

A high-yielding cyclocondensation of 4-hydroxycoumarin, phenylglyoxal monohydrate, and heteroarylamines proceeds without catalysis, which gives novel functionalized furo[3,2-c]coumarins and heteroarylamino alkylation of coumarin products in acetonitrile under reflux, is reported for the first time. This tandem process involves sequentially an aldol condensation, Michael addition, a ring closure, and dehydration reaction.

Supporting Information

 
  • References and Notes

    • 1a Murray RD. H. Mendey J. Brown SA. The Natural Coumarins. Wiley; New York: 1982: 147
    • 1b Valencia E. Patra A. Freyer AJ. Shamma M. Fajardo VS. Tetrahedron Lett. 1984; 25: 3163
  • 2 Pan JJ. Lu W. Li CH. Wang SC. He LC. Arch. Pharm. Res. 2010; 33: 1209
  • 3 Name Reactions. Li JJ. Springer; Berlin: 2009
  • 4 Kyong-Hwa K. Chang-Suk K. Youngwan S. Moon-Moo K. Se-Kwon K. Food Chem. Toxicol. 2009; 47: 2129
  • 5 Wang X. Bastow KF. Sun CM. Lin YL. Yu HJ. Don MJ. Wu TS. Nakamura S. Lee KH. J. Med. Chem. 2004; 47: 5816
  • 6 Xu ZQ. Pupek K. Suling WJ. Enacheb L. Flavin MT. Bioorg. Med. Chem. 2006; 14: 4610
  • 7 Yeh JY. Coumar MS. Horng JT. Shiao HY. Kuo FM. Lee HL. Chen IC. Chang CW. Tang WF. Tseng SN. Chen CJ. Shih SR. Hsu JT. A. Liao CC. Chao YS. Hsieh HP. J. Med. Chem. 2010; 53: 1519
  • 8 Zhou P. Takaishi Y. Duan H. Phytochemistry 2000; 53: 689
  • 9 Cheng G. Hu Y. Chem. Commun. 2007; 3285
    • 10a Cheng G. Hu Y. J Org. Chem. 2008; 73: 4732
    • 10b Cheng G. Hu Y. Chem. Commun. 2007; 3285
    • 10c Santana L. Uriarte E. Roleira F. Milhazes N. Borges F. Curr. Med. Chem. 2004; 11: 3239
    • 10d Peng S. Gao T. Sun S. Peng Y. Wu M. Guo H. Wang J. Adv. Synth. Catal. 2014; 356: 319
    • 10e Conreaux D. Belot S. Desbordes P. Monteiro N. Balme G. J. Org. Chem. 2008; 73: 8619
    • 10f Chen L. Li Y. Xu MH. Org. Biomol. Chem. 2010; 8: 3073
    • 10g Zareai Z. Khoobi M. Ramazani A. Foroumadi A. Souldozi A. Slepokura K. Lis T. Shafiee A. Tetrahedron 2012; 68: 6721
    • 10h Ahluwalia VK. Adhikari R. Singh RP. Synth. Commun. 1985; 15: 1191
    • 10i Trokovnik M. Djudjic R. Jabakovic I. Kules M. Org. Prep. Proced. Int. 1982; 14: 21
    • 10j Reish J. Arch. Pharm. 1966; 299: 798
    • 10k Monteiro N. Raffa G. Rusch M. Balme G. Org. Lett. 2009; 11: 5254
    • 10l Zhang XY. Hu LL. Shen Z. Chen ZZ. Xu ZG. Li SQ. Xei JW. Cui HL. Synlett 2015; 26: 2821
    • 10m Sudipta Ponra S. Gohain M. Tonder JH. van Bezuidenhoudt BC. B. Synlett 2015; 26: 745
    • 10n Sheikhhosseini E. Trend. Mod. Chem. 2012; 3: 34
    • 10o Kaneria AR. Giri RR. Bhila VG. Prajapati HJ. Brahmbhatt DI. Arabian J. Chem. 2017; 10: 1100
    • 10p Shaabani A. Teimouri MB. Bijanzadeh HR. Monatsh. Chem. 2004; 135: 589
    • 10q Zhou Z. Liu H. Li Y. Liu J. Li Y. Liu J. Yao J. Wang C. ACS Comb. Sci. 2013; 15: 363
    • 11a Khoeiniha R. Olyaei A. Saraei M. Synth. Commun. 2018; 48: 155
    • 11b Olyaei A. Shahsavari MS. Sadeghpour M. Res. Chem. Intermed. 2018; 44: 943
    • 11c Khoeiniha R. Olyaei A. Saraei M. J. Heterocycl. Chem. 2017; 54: 1746
    • 11d Sadeghpour M. Olyaei A. Rezaei M. J. Heterocycl. Chem. 2016; 53: 981
    • 11e Olyaei A. Karimi MK. Razeghi R. Tetrahedron Lett. 2013; 54: 5730
    • 11f Olyaei A. Vaziri M. Razeghi R. Tetrahedron Lett. 2013; 54: 1963
  • 12 General Procedure for the Synthesis of Compounds 4 and 6 A mixture of 4-hydroxycoumarin (1.0 mmol), phenylglyoxal monohydrate (1.0 mmol), and heteroarylamine (1.0 mmol) was heated in CH3CN (10 mL) under reflux with stirring for the requisite time (Schemes 1 and 3). After completion of the reaction (monitoring by TLC), the reaction mixture was allowed to cooled room temperature and the precipitated product was separated by filtration, washed with cold CH3CN, and dried to give the crude product. The crude product was stirred for 5 min in boiling THF, and the resulting precipitate was filtered. The final products 4 and 6 thus obtained were found to be pure upon TLC examination. Selected Analytical Data
    2-Phenyl-3-(pyridin-2-ylamino)-4H-furo[3,2-c]chromen-4-one (4a)
    White powder; yield 300 mg (85%); mp >350 °C. IR (KBr): 3309, 3058, 1662, 1600, 1515, 1460, 1407, 1276, 1199, 1137, 1058 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 7.21–7.45 (m, 7 H, NH, ArH), 7.55 (t, 1 H, J = 7.5 Hz, ArH), 7.78–7.91 (m, 5 H, ArH), 8.28 (d, 1 H, J = 6.6 Hz, ArH) ppm. 1H NMR (300 MHz, DMSO-d 6 + D2O): δ = 7.22–7.44 (m, 6 H, ArH), 7.55 (t, 1 H, J = 7.5 Hz, ArH), 7.73–7.88 (m, 5 H, ArH), 8.22 (d, 1 H, J = 6.6 Hz, ArH) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 112.37, 116.52, 116.58, 116.65, 121.08, 122.23, 123.11, 125.43, 127.55, 127.96, 129.01, 129.27, 129.66, 132.03, 132.64, 132.68, 132.69, 139.46, 154.71, 163.09 ppm. MS (EI, 70 eV): m/z (%) = 354 (100) [M]+, 337, 297, 269, 234, 205, 177, 121, 78. Anal. Calcd for C22H14N2O3: C, 74.57; H, 3.95; N, 7.90. Found: C, 74.65; H, 3.86; N, 7.93. 3-[1-(6-Methylpyridin-2-ylamino)-2-oxo-2-phenylethyl]-4-hydroxy-2H-chromen-2-one (6a) White powder; yield 332 mg (83%); mp 320 °C (dec.). IR (KBr): 3216, 3058, 2919, 1700, 1654, 1504, 1415, 1338, 1249, 1103, 1045 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 2.52 (s, 3 H, CH3), 6.33 (s, 1 H, methine-H), 6.61 (d, 1 H, J = 7.2 Hz, ArH), 7.10 (d, 1 H, J = 8.1 Hz, ArH), 7.18–7.49 (m, 7 H, NH, ArH), 7.68–7.92 (m, 4 H, ArH), 9.22 (br, 1 H, OH) ppm. 1H NMR (300 MHz, DMSO-d 6 + D2O): δ = 2.49 (s, 3 H, CH3), 6.31 (s, 1 H, methine-H), 6.60 (d, 1 H, J = 6.9 Hz, ArH), 7.07 (d, 1 H, J = 8.1 Hz, ArH), 7.16–7.47 (m, 6 H, ArH), 7.67–7.92 (m, 4 H, ArH) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 19.42, 55.03, 98.37, 107.75, 111.60, 116.34, 117.40, 121.47, 123.35, 125.20, 128.13, 128.57, 131.84, 133.24, 135.36, 142.40, 147.28, 153.05, 153.92, 173.39, 194.99 ppm. MS (EI, 70 eV): m/z (%) = 278 [M – 108]+, 249, 221, 201, 173, 121, 108, 105 (100), 92, 77. Anal. Calcd for C23H18N2O4: C, 71.50; H, 4.66; N, 7.25. Found: C, 71.44; H, 4.69; N, 7.33.
  • 13 Shao J. Ke D. Shu K. Chen E. Yu Y. Chen W. Synlett 2018; 29: 922