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Abstract A synthesis of S,S-DICHED (dicyclohexylethane-1,2-diol), a
C2-symmetrical chiral director for Matteson homologations, is de-
scribed. It relies on the insertion of lithiated S-2-cyclohexyloxirane into
cyclohexylboronic acid pinacol ester and proceeds in three linear steps
from readily available starting materials. No step requires chromatogra-
phy or any specialized equipment.
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DICHED (dicyclohexylethane-1,2-diol, 1) and DIPED (di-
isopropylethane-1,2-diol) are C2-symmetrical, highly effec-
tive chiral directors for Matteson's diastereoselective homo-
logation of corresponding boronic esters.1 S,S-DICHED
(SS-1) is commercially available in enantiomerically pure
form but rather expensive. Preparation of scalemic DICHED
was first described by Hoffmann and co-workers.2 It re-
quires Sharpless bishydroxylation of trans-stilbene and
subsequent hydrogenation, which was achieved with
Rh/Al2O3 at 60–70 atm H2. Matteson et al. developed a re-
duction protocol that proceeds via a concentrated solution
of the corresponding methoxy borate, which only requires
10–11 atm H2.3 The high cost of RhCl3, as well as the incon-
venience of the high-pressure hydrogenation procedures4

led us to explore alternative routes, the best of which is
shown in Scheme 1. It was based on the work of Aggarwal
et al., who first described the insertion of lithiated epoxides
(similar to 8) into pinacol boronates.5

For our synthesis of S,S-DICHED (SS-1), enantiomerical-
ly pure cyclohexyloxirane 5 was prepared as reported by
Ortiz-Marciales et al.6 by brominating ketone 2 and submit-
ting the crude product 3 to a CBS-type reduction and cy-
clization using catalyst 4. Scale up of the procedure to

multigram levels was straightforward, as bromide 3 could
be used directly after aqueous workup and oxirane 5 was
distilled at 56–65 °C at 14 mbar.

To convert oxirane 5 into DICHED, lithiation with LiTMP
in the presence of two equivalents of cyclohexylpinacol bo-
ronate 6 had to be carried out at 0 °C for two hours. The

Scheme 1  (A) Synthesis of S,S-DICHED (SS-1). (B) Mechanism of 
Aggarwal homologation with lithiated epoxides and suggested explana-
tion for the need for two equivalents of 6.7 (C) Application of SS-1 in a 
short Matteson sequence showed no double stereodifferentiation, but 
confirmed the absolute configuration of SS-1.
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chiral carbenoid 8 and boronate 6 form ate complex 9 that
undergoes a 1,2-rearrangement to α-alkoxyboronate 10.
Aggarwal's original procedure for this type of reaction5 em-
ployed –30 °C, but 5 did not react with LiTMP under these
conditions (as confirmed by in situ quench with TMSCl).
Initially we allowed the reaction mixture to reach room
temperature to facilitate the 1,2-rearrangement. However,
on warmer days competing β-elimination (of 10 to 1,2-
dicyclohexylethylene) was observed. This problem was
completely avoided by using a p-xylene/solid CO2 cooling
bath (13 °C). The reaction was then completed by
H2O2/NaOH oxidation at 0 °C. Attempts to reduce the re-
quired amount of boronate 6 led to significant losses in
yield.7 However, as 6 can be readily made on a large scale
(see Supporting Information), the need for two equivalents
of 6 is of little preparative concern.

The de of the reaction was excellent and no formation of
the undesired meso-diol was observed by 1H NMR analysis
of the crude product. The enantiomeric purity of the prod-
uct was assessed after derivatization with (S)-OAc-mandel-
ic acid (SS-1 → 7) and was usually >95% ee. On occasions
when slightly less pure batches of catalyst 4 were used, the
ee dropped to 89–91%. Such material could, however, be en-
antiomerically enriched afterwards by recrystallization
from EtOH (0.75 g/mL) or by column chromatography after
conversion into 7 (see Supporting Information). The abso-
lute configuration of SS-1was confirmed after using its bo-
ronic ester derivative 118 in a short homologation sequence
to yield 12 (Scheme 1, C). Conversion into 13 delivered a
product of which both diastereomers are known.9 Interest-
ingly 13 had a de of only 80%, although the sequence started
with highly pure material (>95% ee). This could indicate that
the double stereodifferentiation discovered by Matteson1

did not occur in this case, probably due to the high migra-
tion tendency of the newly introduced vinyl group.10

In the context of this work, we also looked at Matteson's
synthesis of DIPED from tartaric acid,11 which we were able
to modify, so that the use of a pyrolysis oven was avoided
and the expensive rhodium catalyst could be replaced by
Raney nickel (see Supporting Information). Nevertheless
the enantioselective synthesis of S,S-DICHED12 (Scheme 1),
emerged as advantageous, as it creates a nonvolatile prod-
uct (unlike DIPED), does not require expensive transition
metals or chromatography and can be conducted without
the use of high pressure or other specialized equipment. Its
disadvantage is the need for the potentially toxic interme-
diates 3 and 5, for which we recommend careful handling.
Accordingly annotated procedures are given in the Support-
ing Information.
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layer was re-extracted with Et2O, and the combined organic
layers were washed with sat. aq. NH4Cl, brine and aq. NaOH (1
M). The organic phase was dried over MgSO4, filtered, and the
solvent was removed in vacuo to yield a yellow solid. Recrystal-
lization from EtOH or chromatography on silica (CyHex/EtOAc,
9:1) yielded SS-1 in 55–60% yield. Rf = 0.28 (CyHex/EtOAc, 4:1).

1H NMR (300 MHz, CDCl3): δ = 3.45–3.25 (m, 2 H), 1.95–1.42 (m,
12 H), 1.34–0.95 (m, 10 H). 13C NMR (75 MHz, CDCl3): δ = 75.1,
40.4, 29.6, 28.2, 26.4, 26.2, 26.1. 1H NMR and 13C NMR data were
consistent with those previously reported by: Scott, M. S.;
Lucas, A. C.; Luckhurst, C. A.; Prodger, J. C.; Dixon, D. J. Org.
Biomol. Chem. 2006, 4, 1313.
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