Synthesis 2018; 50(03): 651-657
DOI: 10.1055/s-0036-1591516
paper
© Georg Thieme Verlag Stuttgart · New York

Improved Synthesis of Racemate and Enantiomers of Taniguchi Lactone and Conversion of Their C–C Double Bonds into Triple Bonds

Petra Malová Križková
a   Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria   Email: friedrich.hammerschmidt@univie.ac.at
,
Wolfgang Lindner
b   Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
,
a   Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria   Email: friedrich.hammerschmidt@univie.ac.at
› Author Affiliations
Further Information

Publication History

Received: 22 August 2017

Accepted after revision: 09 October 2017

Publication Date:
07 November 2017 (online)


Abstract

cis-2-Butene-1,4-diol was heated with triethyl orthoacetate and p-hydroquinone as catalyst at 170 °C to give racemic Taniguchi lactone. It was converted into diastereomeric amides with (S)-1-phenylethylamine for stereoisomer resolution. The double bonds of (±)-, (R)- and (S)-Taniguchi lactones were brominated and dehydrobrominated in two steps, using at first DBU and then LDA, to deliver the triple bonds.

Supporting Information

 
  • References

  • 1 Ishibashi F. Taniguchi E. Bull. Chem. Soc. Jpn. 1988; 61: 4361
  • 2 Kondo K. Mori F. Chem. Lett. 1974; 3: 741
  • 3 Ishibashi F. Taniguchi E. Phytochemistry 1998; 49: 613
    • 4a Gnamm C. Förster S. Miller N. Brödner K. Helmchen G. Synlett 2007; 790
    • 4b Villar F. Kolly-Kovac T. Equey O. Renaud P. Chem. Eur. J. 2003; 9: 1566
    • 4c Rudroff F. Fink MJ. Pydi R. Bornscheuer UT. Mihovilovic MD. Monatsh. Chem. 2017; 148: 157
  • 5 von Kieseritzky F. Wang Y. Axelson M. Org. Process Res. Dev. 2014; 18: 643
  • 6 Hong JH. Arch. Pharm. Res. 2007; 30: 131
  • 7 Stork G. Niu D. Fujimoto A. Koft ER. Balkovec JM. Tata JR. Dake GR. J. Am. Chem. Soc. 2001; 123: 3239
    • 8a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 8b Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
  • 9 Guo Y. Fan X.-M. Nie M. Liu H.-W. Liao D.-H. Pan X.-D. Ji Y.-F. Eur. J. Org. Chem. 2015; 4744
  • 10 Johnson WS. Werthemann L. Bartlett WR. Brocksom TJ. Li T. Faulkner DJ. Petersen MR. J. Am. Chem. Soc. 1970; 92: 741

    • Selected references:
    • 11a Saudagar Ghogare R. Bibishan Wadavrao S. Venkat Narsaiah A. Helv. Chim. Acta 2016; 99: 247
    • 11b Nagi Reddy KS. Yugendar Reddy A. Sabitha G. Synthesis 2016; 48: 3812
    • 11c Williams BM. Trauner D. Angew. Chem. Int. Ed. 2016; 55: 2191
    • 11d Kjeldsen ND. Funder ED. Gothelf KV. Org. Biomol. Chem. 2014; 12: 3679
    • 11e Nomula R. Raju G. Radha Krishna P. Tetrahedron Lett. 2014; 55: 5976
    • 11f Jepsen TH. Kristensen JL. J. Org. Chem. 2014; 79: 9423
    • 11g Pietruszka J. Witt A. Synthesis 2006; 4266
    • 11h Roth GJ. Liepold B. Müller SG. Bestmann HJ. Synthesis 2004; 59
    • 11i Brenneman JB. Martin SF. Org. Lett. 2004; 6: 1329
    • 11j Brown DG. Velthuisen EJ. Commerford JR. Brisbois RG. Hoye TR. J. Org. Chem. 1996; 61: 2540
    • 11k Müller S. Liepold B. Roth GJ. Bestmann HJ. Synlett 1996; 521
    • 11l Ohira S. Synth. Commun. 1989; 19: 561
  • 12 Yokoyama T. Kutsumura N. Ohgiya T. Nishiyama S. Bull. Chem. Soc. Jpn. 2007; 80: 578
    • 13a Fürstner A. De Souza D. Parra-Rapado L. Jensen JT.. Angew. Chem. Int. Ed. 2003; 42: 5358
    • 13b Bobeck DR. Lee HI. Flick AC. Padwa A. J. Org. Chem. 2009; 74: 7389