Synlett 2017; 28(18): 2473-2477
DOI: 10.1055/s-0036-1591508
cluster
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Silylation of Alcohols by Transfer Hydrosilylation with Silyl Formates

Timothé Godou
NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France   Email: thibault.cantat@cea.fr
,
Clément Chauvier
NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France   Email: thibault.cantat@cea.fr
,
Pierre Thuéry
NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France   Email: thibault.cantat@cea.fr
,
NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France   Email: thibault.cantat@cea.fr
› Author Affiliations
For financial support of this work, we acknowledge CEA, CNRS, the CHARMMMAT Laboratory of Excellence and the European Research Council (ERC Starting Grant Agreement n.336467). T.C. thanks the Foundation Louis D. – Institut de France for its support.
Further Information

Publication History

Received: 04 October 2017

Accepted after revision: 06 October 2017

Publication Date:
17 October 2017 (online)


Published as part of the Cluster Silicon in Synthesis and Catalysis

Abstract

An iron catalyst is shown for the first time to promote transfer hydrosilylation with silyl formates and is utilized for the silylation of alcohols. Attractive features of this protocol include the use of an earth-abundant transition-metal catalyst, mild reaction conditions, and the release of gases as the only byproducts (H2 and CO2).

Supporting Information

 
  • References and Notes

  • 1 Oestreich M. Angew. Chem. Int. Ed. 2016; 55: 494
  • 2 Wang D. Astruc D. Chem. Rev. 2015; 115: 6621
  • 3 Amrein S. Studer A. Helv. Chim. Acta 2002; 85: 3559
  • 4 Amrein S. Timmermann A. Studer A. Org. Lett. 2001; 3: 2357
  • 5 Keess S. Simonneau A. Oestreich M. Organometallics 2015; 34: 790
  • 6 Simonneau A. Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 11905
  • 7 Simonneau A. Oestreich M. Nat. Chem. 2015; 7: 816
  • 8 Chauvier C. Thuery P. Cantat T. Angew. Chem. Int. Ed. 2016; 55: 14096
  • 9 Lalrempuia R. Iglesias M. Polo V. Miguel PJ. S. Fernandez-Alvarez FJ. Perez-Torrente JJ. Oro LA. Angew. Chem. Int. Ed. 2012; 51: 12824
  • 10 Motokura K. Kashiwame D. Takahashi N. Miyaji A. Baba T. Chem. Eur. J. 2013; 19: 10030
  • 11 Sattler W. Parkin G. J. Am. Chem. Soc. 2012; 134: 17462
  • 12 Zhang L. Cheng JH. Hou ZM. Chem. Commun. 2013; 49: 4782
  • 13 Chauvier C. Godou T. Cantat T. Chem. Commun. 2017; 53 in press; DOI: 10.1039/C7CC05212J.
  • 14 Wuts PG. M. Greene TW. In Greene's Protective Groups in Organic Synthesis. John Wiley and Sons; Hoboken, NJ: 2006: 16
  • 15 Huang CH. Ghavtadze N. Chattopadhyay B. Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 17630
  • 16 Herrera NN. Letoffe JM. Putaux JL. David L. Bourgeat-Lami E. Langmuir 2004; 20: 1564
  • 17 Patschinski P. Zhang C. Zipse H. J. Org. Chem. 2014; 79: 8348
  • 18 Corey EJ. Venkateswarlu A. J. Am. Chem. Soc. 1972; 94: 6190
  • 19 Corey EJ. Cho H. Rucker C. Hua DH. Tetrahedron Lett. 1981; 22: 3455
  • 20 Mukherjee D. Thompson RR. Ellern A. Sadow AD. ACS Catal. 2011; 1: 698
  • 21 Garces K. Fernandez-Alvarez FJ. Polo V. Lalrempuia R. Perez-Torrente JJ. Oro LA. ChemCatChem 2014; 6: 1691
  • 22 Weickgenannt A. Oestreich M. Chem. Asian J. 2009; 4: 406
  • 23 Chang S. Scharrer E. Brookhart M. J. Mol. Catal. A: Chem. 1998; 130: 107
  • 24 Blackwell JM. Foster KL. Beck VH. Piers WE. J. Org. Chem. 1999; 64: 4887
  • 25 Ito H. Watanabe A. Sawamura M. Org. Lett. 2005; 7: 1869
  • 26 Toutov AA. Betz KN. Haibach MC. Romine AM. Grubbs RH. Org. Lett. 2016; 18: 5776
  • 27 Boddien A. Mellmann D. Gartner F. Jackstell R. Junge H. Dyson PJ. Laurenczy G. Ludwig R. Beller M. Science 2011; 333: 1733
  • 28 Field LD. Messerle BA. Smernik RJ. Inorg. Chem. 1997; 36: 5984
  • 29 Field LD. Messerle BA. Smernik RJ. Hambley TW. Turner P. Inorg. Chem. 1997; 36: 2884
  • 30 Mellmann D. Barsch E. Bauer M. Grabow K. Boddien A. Kammer A. Sponholz P. Bentrup U. Jackstell R. Junge H. Laurenczy G. Ludwig R. Beller M. Chem. Eur. J. 2014; 20: 13589
  • 31 General Procedure for the Synthesis of Silylformates (2)In a glovebox, a flame-dried round-bottom flask equipped with a Solv-seal connection and a J-Young valve was charged with sodium formate (42 mmol, 1.4 equiv) and suspended in Et2O (30 mL, c 1 M). To the resulting suspension was added the silyl chloride 1 (30 mmol, 1 equiv). The flask was then sealed, brought out of the glovebox, and immersed in a pre-heated oil bath at 90 °C (oil temperature). Unless otherwise stated, the reactions were generally complete within 15 h. The mixture was then filtered over a sintered glass funnel and the solvent removed by distillation under vacuum at 0 °C. No other purification was needed. The formation of silyl formate was confirmed by 1H, 13C NMR, and elemental analysis.Analytical Data for 2e (Representative Example) 1H NMR (200 MHz, d8 -THF): δ = 8.18 (s, 1 H), 7.71–7.56 (m, 4 H), 7.38 (m, 6 H), 0.85 (s, 3 H). 13C NMR (50 MHz, d8 -THF): δ = 160.88, 135.09, 134.47, 130.99, 128.53, –2.64. Anal. Calcd (%) for C14H14O2Si (243.3 g mol–1): C, 69.39; H, 5.82. Found: C, 69.03; H, 5.67.General Procedure for the Transfer Hydrosilylation of Alcohols with Silylformates 5–21In a glovebox, a flame-dried flask equipped with a J-Young valve was charged with Fe(OAc)2 (1.7 mg , 0.01 mmol, 2 mol%) and P(C2H4PPh2)3 (4, 6.7 mg , 0.01 mmol, 2 mol%) followed by CH2Cl2 (2 mL, c 0.25 M). To the resulting white suspension were sequentially added the alcohol (0.5 mmol, 1 equiv) and the silyl formate 2 (0.6 mmol, 1.2 equiv per hydroxyl group) reagents. The flask was then sealed, brought out of the glovebox, and immersed in a pre-heated oil bath at 90 °C (oil temperature). A purple coloration appeared when heated. At this temperature, all the reactions were generally complete within 1.5 h with silyl formates 2. The coloration observed turned from purple to bright orange. Yields of silyl ethers were determined after isolation and purification by column chromatography on silica gel.Analytical Data for 16b (Representative Example) 1H NMR (200 MHz, d8 -THF): δ = 5.59 (s, 1 H), 3.58 (m, 2 H), 1.89 (m, 14 H), 1.20 (s, 3 H), 1.12–0.78 (m, 4 H), 0.75 (s, 3 H), 0.06 (s, 9 H). 13C NMR (50 MHz, d8 -THF): δ = 195.30, 167.91, 122.75, 80.52, 53.42, 49.26, 41.92, 37.52, 35.86, 35.00, 34.79, 32.75, 31.49, 30.85, 29.81, 22.38, 19.69, 15.74, 9.80, –1.61. ESI-HRMS: m/z [M + H]+ calcd for C14H25O2Si+: 361.2557; found: 361.2557.