Commercial Synthesis of BMS-663068

Significance: The entire issue 8 of *Organic Process Research & Development* is devoted to an extraordinarily detailed account of the development of a commercial synthesis of the HIV attachment inhibitor BMS-663068 by workers at Bristol-Myers Squibb. The strategy, tactics and mechanistic illumination that transformed enabling routes to a commercial process that delivered >1000 kg of API are presented in nine back-to-back papers.

Comment: By way of an overture, Yan and Baran provide a graphical synopsis of the synthesis (see Scheme), innovations and key achievements. Every atom of BMS-663068 is derived from economical, readily available, safe, and easily handled compounds, thereby ensuring a robust and secure supply chain for all raw materials. Moreover, the synthesis is noteworthy for being free of challenging reaction conditions.

Preparation of HIV Attachment Inhibitor BMS-663068

Part 1. Evolution and Enabling Strategies. DOI: 10.1021/acs.oprd.7b00134
Part 2. Strategic Selections in the Transition from an Enabling Route to a Commercial Synthesis. DOI 10.1021/acs.oprd.7b00121
Part 3. Mechanistic Studies Enable a Scale-Independent Friedel–Crafts Acylation. DOI: 10.1021/acs.oprd.7b00115
Part 4. Synthesis of the 6-Azaindole Core. DOI: 10.1021/acs.oprd.7b00152
Part 5. Selective C-7 Bromination of the 6-Azaindole Core. DOI: 10.1021/acs.oprd.7b00132
Part 6. Friedel–Crafts Acylation/Hydrolysis and Amidation. DOI: 10.1021/acs.oprd.7b00133
Part 7. Development of a Regioselective Ullmann–Goldberg–Buchwald Reaction. DOI: 10.1021/acs.oprd.7b00191
Part 8. Installation of the Phosphonomethyl Prodrug Moiety. DOI: 10.1021/acs.oprd.7b00135

SYNFACTS Contributors: Philip Kocienski
Synfacts 2017, 13(11), 1111 Published online: 19.10.2017 DOI: 10.1055/s-0036-1591403; Reg-No.: K04217SF