T. Komanoya, T. Kinemura, Y. Kita, K. Kamata, M. Hara* (Tokyo Institute of Technology, Yokohama and Japan Science and Technology Agency, Kawaguchi, Japan)

Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds

Reductive Amination of Carbonyl Compounds on Nb₂O₅-Supported Ruthenium

Significance: Nb₂O₅-supported ruthenium nanoparticles (Ru/Nb₂O₅) were prepared by mixing Nb₂O₅ with an aqueous solution of Ru(NO)(NO₃)₃, followed by treatment under flowing H₂/argon at 673 K (eq. 1). Ru/Nb₂O₅ promoted the reductive amination of carbonyl compounds 1 with NH₃ and H₂ to give the corresponding primary amines 3 in ≤98% yield (eq. 2).

Comment: Ru/Nb₂O₅ prevented the formation of secondary amines and undesired hydrogenated byproducts. Ru/Nb₂O₅ was characterized by means of SEM, STEM, XPS, TPR, XRD and FT-IR analyses. Ru/Nb₂O₅ was recovered and reused three times without loss of its catalytic activity (eq. 2f; first reuse: 99% yield; second reuse: 93%; third reuse: 94%).