Catalytic Asymmetric Cross-Coupling of Styrenyl Aziridines

The metal-catalyzed cross-coupling reaction is one of the most useful reactions for forming C–C bonds. A nickel-catalyzed reductive cross-coupling of racemic styrenyl aziridines with aryl halides in the presence of a new bisoxazoline ligand gave highly enantioenriched 2-arylphenethylamines in good yields and with excellent enantioselectivity.

Significance: The method has a broad substrate scope and tolerates various functional groups. Moreover, variation in the enantioselectivity depending on the ligand was well explained by means of multivariate analysis. A detailed ligand study was carried out to determine the origin of the observed selectivity. The present method can be useful in the synthesis of various chiral 2-arylphenethylamine moieties present in bioactive molecules and pharmaceutically important molecules.

Comment: The method has a broad substrate scope and tolerates various functional groups. Moreover, variation in the enantioselectivity depending on the ligand was well explained by means of multivariate analysis. A detailed ligand study was carried out to determine the origin of the observed selectivity. The present method can be useful in the synthesis of various chiral 2-arylphenethylamine moieties present in bioactive molecules and pharmaceutically important molecules.

Category
Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words
nickel catalysis cross-coupling aziridines ring opening arylphenethylamines

SYNFACTS Contributors: Hisashi Yamamoto, Amit Banerjee

**Synfacts 2017, 13(07), 0709 Published online: 19.06.2017 DOI: 10.1055/s-0036-1590537; Reg-No.: H06617SF

2017 © THIEME STUTTGART • NEW YORK