D. CHEN, P. A. EVANS* (QUEEN'S UNIVERSITY, KINGSTON, CANADA)

A Concise, Efficient and Scalable Total Synthesis of Thapsigargin and Nortrilobolide from (R)-(−)-Carvone

J. Am. Chem. Soc. 2017, 139, 6046–6049.

Total Synthesis of Thapsigargin and Nortrilobolide

Significance: Thapsigargin has attracted great interest over the past 40 years due to its highly oxygenated, complex framework combined with high biological activity. Thapsigargin inhibits intracellular calcium transport at picomolar concentrations. A closely related analogue is currently in phase II clinical trials against liver, brain, prostate, and kidney cancer.

Comment: (R)-(−)-Carvone is transformed into D through allylic chlorination and substitution. An ozonolysis–aldol sequence followed by a pinacol coupling delivers the characteristic 5-7-5 framework in G. Further redox manipulation and side-chain introductions then concisely deliver synthetic thapsigargin. Nortrilobolide lacking the α-acyl-oxy side chain at the ketone was similarly synthesized.

SYNFACTS Contributors: Erick M. Carreira, Philipp Sondermann

Synfacts 2017, 13(07), 0673 Published online: 19.06.2017
DOI: 10.1055/s-0036-1590515; Reg-No.: C02917SF