Silylium Ion Catalyzed C–H Arylation of Hydrocarbons

Significance: The Nelson group reports a silylium ion catalyzed arylation of C(sp²)–H and C(sp³)–H bonds. By employing 2–5 mol% of precatalyst A in the presence of a trialkylsilane initiator, various aliphatic and aromatic hydrocarbons were arylation with variously functionalized trimethylsilyl fluoro-benzenes.

Comment: Previously, catalytic reactions involving highly reactive phenyl cation equivalents were limited to intramolecular transformations. The authors describe the formation of a β-silicon-stabilized phenyl cation (equivalent) II, which is proposed to subsequently undergo intermolecular insertion into the C–H bond of a hydrocarbon present in large excess. Desilylation of the resulting Wheland intermediate furnishes the product and regenerates the catalytically active species I.

Selected examples:

- ![Example 1](image1)
 - 58% GC yield

- ![Example 2](image2)
 - 42% GC yield (α/β/γ = 30:10:2)
 - 32% isolated yield

Proposed catalytic cycle:

1. **Initiation:**
 - [Ph₃C]+X– + R₃SiH → [Ph₃C]+X–R₃SiH

2. **β-silicon stabilized phenyl cation**
 - I

3. **C–H insertion**
 - II

4. **Regeneration**
 - III

- ![Diagram](image3)

SYNFACTS Contributors: Benjamin List, Lucas Schreyer

Synfacts 2017, 13(06), 0645 Published online: 16.05.2017

DOI: 10.1055/s-0036-1590436; Reg-No.: 1B04017SF