Silylium Ion Catalyzed C–H Arylation of Hydrocarbons

Significance: The Nelson group reports a silylium ion catalyzed arylation of C(sp²)–H and C(sp³)–H bonds. By employing 2–5 mol% of precatalyst A in the presence of a trialkylsilane initiator, various aliphatic and aromatic hydrocarbons were arylated with variously functionalized trimethylsilyl fluorobenzenes.

Comment: Previously, catalytic reactions involving highly reactive phenyl cation equivalents were limited to intramolecular transformations. The authors describe the formation of a β-silicon-stabilized phenyl cation (equivalent) II, which is proposed to subsequently undergo intermolecular insertion into the C–H bond of a hydrocarbon present in large excess. Desilylation of the resulting Wheland intermediate furnishes the product and regenerates the catalytically active species I.

Selected examples:
- 56% GC yield; 49% isolated yield
- 42% GC yield; α/β/γ = 30:10:2
- 32% isolated yield

Proposed catalytic cycle: