Palladium-Catalyzed Reductive Heck Reaction

Significance: Water represents the cheapest and most environmentally benign source of hydrogen or hydride; therefore, its use in combination with transition-metal catalysis is very appealing. In the present work, the authors present a palladium-catalyzed enantioselective reductive Heck reaction using water as final hydride donor.

Comment: N-Aryl acrylamides reacted in the presence of a [PdCl₂(MeCN)₂] catalyst and (S)-t-BuPHOX ligand to generate the corresponding products in good yields and good enantioselectivities using water as hydride source. The use of DABCO as a base and a catalytic amount of B₂(OH)₄ was found to be crucial for the success of the transformation. The use of deuterium oxide allowed the synthesis of D-labeled oxindoles with >90% D incorporation.

Selected examples:

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>OTf</th>
<th>[PdCl₂(MeCN)₂] (10.0 mol%)</th>
<th>ligand (20.0 mol%)</th>
<th>B₂(OH)₄ (2.0 equiv)</th>
<th>H₂O (2.0 equiv)</th>
<th>DABCO (4.0 equiv)</th>
<th>MeCN, 80 °C, 14 h (0.1 mmol scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
<td>OTf</td>
<td>[PdCl₂(MeCN)₂] (10.0 mol%)</td>
<td>ligand (20.0 mol%)</td>
<td>B₂(OH)₄ (2.0 equiv)</td>
<td>H₂O (2.0 equiv)</td>
<td>DABCO (4.0 equiv)</td>
<td>MeCN, 80 °C, 14 h (0.1 mmol scale)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Reactions performed with D₂O and B₂Cat₂:

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>OTf</th>
<th>[PdCl₂(MeCN)₂] (10.0 mol%)</th>
<th>ligand (20.0 mol%)</th>
<th>B₂(OH)₄ (2.0 equiv)</th>
<th>H₂O (2.0 equiv)</th>
<th>DABCO (4.0 equiv)</th>
<th>MeCN, 80 °C, 14 h (0.1 mmol scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
<td>OTf</td>
<td>[PdCl₂(MeCN)₂] (10.0 mol%)</td>
<td>ligand (20.0 mol%)</td>
<td>B₂(OH)₄ (2.0 equiv)</td>
<td>H₂O (2.0 equiv)</td>
<td>DABCO (4.0 equiv)</td>
<td>MeCN, 80 °C, 14 h (0.1 mmol scale)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SYNFACTS Contributors: Mark Lautens, Ivan Franzoni

Synfacts 2017, 13(05), 0495 Published online: 18.04.2017

DOI: 10.1055/s-0036-1590330; **Reg-No.** L02717SF