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Dear Readers,

It’s nearly Halloween but this new number of SYN-
FORM is all but spooky: no ghosts, no vampires, no 
monsters, just the usual poker of articles covering 
some of the best scientific articles that appeared in the 
recent organic chemistry literature.

Let’s have a glimpse at the content of this November 
issue then. David Barker’s (New Zealand) total syn thesis 
of Ovafolinins A and B achieved through a cascade 
 cyclization is a very rich entry, followed by a Young 
Career Focus interview to Jianhui Huang (P. R. of China) 
who gives an excellent presentation of his scientific 
interests and achievements so far. The third contribu-
tion reports on a ground-breaking new methodology 
allowing the direct use of nitroarenes – without having 
to convert them into aryl halides – as substrates for the 
Suzuki–Miyaura cross-coupling. The fourth and final 
article covers a new method for depolymerizing lignin 
into useful building blocks via redox catalysis.

That’s all for November and let’s go home now, it’s 
almost dark outside, and quite foggy too. Wait. Did you 
hear that noise, like a creaking door? Right, no worries, 
perhaps is just the wind. Actually, must be the wind. 
Again that noise… did you hear it now? And now like 
a maniacal laughter? The corridors of the Institute are 
plunged into darkness; there should be nobody around 
on a Saturday evening… Oh well, I think I know what 
it is… it must be my colleague who has got his paper 
rejected once again by that super high impact factor 
journal… right now he is probably transforming into 
Mr. Hyde again, he should have followed my advice to 
submit his paper to either SYNLETT or SYNTHESIS…   
at least he doesn’t need a costume for Halloween… 
Mwahahaha…

Enjoy your reading and remember: follow us on Twitter! 
Mwahahaha…
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Since 2009, the research group of Professor David Barker at the 
University of Auckland (New Zealand) has been interested in 
the use of the acyl-Claisen rearrangement and its application 
to the synthesis of lignan natural products. Professor Barker 
said: “We have previously used this approach to synthesise a 
number of different lignan subclasses including tetrahydrofu-
ran lignans such as galbelgin1 and magnosalicin,2 diarylbuta-
nol lignans (kadangustin J3) and aryl tetralin lignans (such as 
cyclogalgravin1 and isoguaiacin4).”

He continued: “In this case we wished to demonstrate 
the utilisation of these strategies in a complex example. Ova-
folinins A and B represent unique structural targets as they 
are the only examples of lignan natural products containing 
a seven-membered benzoxepin penta- or tetracyclic scaffold, 
respectively. This would allow us to determine the power and 
utility of our approach to complex natural products.” The 
group began the synthesis in 2014 by developing a retro-
synthetic plan which aimed to form the six-membered tetra-
hydronaphthalene ring of the polycyclic structure 1 after the 
seven-membered benzoxepin ring in 2 (Scheme 1). “The ratio - 
nale for this approach was that the seven-membered ring 

could be formed through an intramolecular cyclisation of an 
open-chain precursor 3 more easily at this stage rather than 
trying to form it in a constrained tricyclic molecule,” explain ed   
Professor Barker. The open-chain precursor 3 would be ac - 
cess ed from an acyl-Claisen derived amide 4, synthesised 
from a substituted allylic morpholine 5 and β-phenoxy acid 
chloride 6.

The synthetic steps to prepare 5 and 6 worked very well, 
as the group expected, giving them the required starting 
materials to attempt the acyl-Claisen rearrangement. “Un-
fortunately, we were to discover that the main isolated pro-
duct from this reaction was a substituted acrylate, which we 
thought was a very complicated and redundant way to form 
such compounds,” commented Professor Barker. He conti-
nued: “Further model studies showed that all acid chlorides 
containing a β-alkoxy group underwent the same unwanted 
reactions and did not undergo the acyl-Claisen reaction. This 
led us to redesign our synthesis, still utilising the acyl-Claisen 
rearrangement but altering the reaction substrates.”

In the group’s initial approach, the mapping of carbons 
of the final structures onto amide 4 would be as shown in 
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Total Synthesis of Ovafolinins A and B: Unique Polycyclic  
Benzoxepin Lignans through a Cascade Cyclization

Angew. Chem. Int. Ed. 2017, 56, 9483–9486

Scheme 1 Initial retrosynthetic approach to ovafolinins A and B
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Scheme 1. “We envisaged that it would be possible to remove 
the troublesome β-alkoxy fragment (C-8 to C-9) and instead 
form amide 7 (Scheme 2), which contains a substituted ben-
zyl group at C-8,” said Professor Barker. “This would require   
that the amide would eventually become C-9 in the final com-
pounds. Additionally, because of this interconversion, the ori-
ginal mapping of C-7′ and C-9′ would be swapped to retain 
the same relative stereochemistry. We envisaged, based on 
our previous experience with this reaction,5,6 that it would be 
much easier to form amide 7 from 5 and newly prepared acid 
chloride 8.”

Synthesis of acid chloride 8 was easily achieved from 
 syringaldehyde and the authors of this study were pleased 
to find that its acyl-Claisen rearrangement with amine 5 

pro ceeded to give the desired amide 7 in almost quantita-
tive  yields as a single diastereoisomer. Professor Barker said: 
“Conversion of the amide group in 7 into the desired prima-
ry alcohol 9 was achieved over three steps (iodolactonisation, 
reduct ive ring opening and finally reduction of the carboxylic 
acid) using a strategy we have previously used (Scheme 3).7 
 Mitsunobu reaction of phenol 10 (which was also prepared 
from syringaldehyde) and alcohol 9 gave ether 11, which had 
then effectively added the phenoxymethyl moiety which 
could not be accessed via our original acyl-Claisen route. Oxi-
dation/periodate cleavage followed by reduction of the alkene 
in 11 gave a primary alcohol, which was initially protected 
as a MOM ether. We chose this protecting group as we have 
pre viously found it to be highly compatible with our lignan 

Scheme 2 Revised retrosynthetic approach to ovafolinins A and B

Scheme 3 Attempted synthesis of benzoxepin 13
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syntheses, as generally there is an acid-catalysed step during 
which the MOM group is removed, effectively reducing the 
synthesis by one step. Unfortunately we were to discover that 
in this case the MOM group in aldehyde 12 was incompatible 
with the intramolecular cyclisation step to form the seven-
membered benzoxepin 13, with tetrahydronaphthalene 14 
being the only compound obtained in appreciable amounts. 
This led us to investigate this process using molecular model-
ling where we found that if a protecting group larger than a 
MOM was used, it appeared that the aryl bromide and alde-
hyde functionalities would be in very close proximity which 
we believed would help facilitate the desired cyclisation.”

 It was then decided to use a large TBDPS protecting group, 
which gave the theoretical best geometry between the two 
reactive sites. After preparation of the TBDPS-protected cycli-
sation precursor, alcohol 15, the group expected that its oxi-
dation would give the corresponding aldehyde, ready to test 
their cyclisation theory (Scheme 4). Professor Barker revealed: 
“However, we were delighted to find that under the oxidation 
conditions we did not obtain the aldehyde but instead, fortui-
tously, the tetracyclic framework of ovafolinin B (16). This was 
a pleasant surprise but highlights the highly electron-rich na-
ture of these compounds and shows that if the reactive groups 
are placed in the correct orientation then these lignan-like 
molecules are formed in a biosynthetic-like manner. This was 
further seen when, upon removal of the protecting groups 
from 16, not only was ovafolinin B formed, but also the for-
mation of the final tetrahydrofuran ring was induced to give 
ovafolinin A. After all the challenges of setting up the linear 
precursors for these compounds, we were very happy to have 
these key ring-forming steps occurring so readily and under 
such mild conditions.”

Following this, the group embarked on an enantioselective 
synthesis of ovafolinins A and B. Professor Barker explained 
that there are no existing relevant examples of asymmetric 
acyl-Claisen reactions, with the only well-studied examples 
requiring α-alkoxy groups which unfortunately were not ap-

plicable to this synthesis.8 “We tried a number of different 
approaches to asymmetrically prepare the debromo analogue 
of linear precursor 15, many of which were unsuccessful. 
Finally, we resolved this by using a route based on an Evans 
asymmetric alkylation,” said Professor Barker. He continued: 
“Luckily, the approach worked well, with the only problem 
being the selective functionalisation of the diol (compound 
28 in the paper) where all efforts to efficiently monosilylate 
it gave an inseparable mixture of regioisomers.” Fortunately, 
the Auckland-based researchers were able to separate the 
desired isomer after the Mitsunobu reaction. “This gave us 
our linear precursor as a single enantiomer which was then 
successfully converted into (+)-ovafolinins A and B,” said Pro-
fessor Barker. The natural products had originally been as - 
sign ed their ab solute stereochemistry based on their CD (cir-
cular dichroism)9,10 spectra; however, the synthesis showed 
that the assignment was incorrect. “This is not the first time 
we have discovered that the use of CD to assign absolute ste-
reochemistry in lignan natural products has led to an incorrect 
assignment,11” remarked Professor Barker. “We believe that in 
many cases it is the fact that the CD spectra of these natural   
products are compared to those of highly simplified com-
pounds that leads to these incorrect assignments, which un-
fortunately is routinely used on this class of natural products.”

When the optical rotation values of the synthetic com-
pounds were analysed and compared to the natural ones, the 
group was intrigued to see that their compounds had a sig-
nificantly higher magnitude of rotation and that the natural 
compounds had been reported with opposite signs. “As our 
synthesis showed that these natural products are easily inter-
converted, we would have expected them to have the same 
sign of rotation like our synthetic samples,” explained Profes-
sor Barker. The NMR spectra of the originally isolated natu-
ral products did not suggest the presence of other impurities 
which could have altered the optical rotation. Therefore, to 
account for the differences in rotation, the group postulated 
that the natural compounds are derived from a racemic pre-

A181

Scheme 4 Final steps to (±)-ovafolinins A and B
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cursor, potentially ovafolinin B, one enantiomer of which may 
have been preferentially oxidised to ovafolinin A. This could 
account for the apparently scalemic nature of the natural pro-
ducts and their opposite signs.

“This work has highlighted the acyl-Claisen rearrange-
ment as a powerful synthetic tool to prepare complex struc-
tures with its high level of diastereoselectivity combined with 
its ease of modifying the substituents being key advantages,” 
said Professor Barker, continuing: “In the end it was our in-
sightful analysis of the products during the MOM-protected 
synthesis that led us to the critical finding that the linear 
precursor could be coaxed into a reactive conformation by 
use of an alternate protecting group. Without the molecular 
modelling we may just have easily embarked on a different 
synthetic route which may or may not have eventually been 
successful.” He concluded: “We aim now to use this approach 
to form other members and analogues of the ovafolinin family 
as well utilising these methods for the synthesis of other com-
plex  natural products.”
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INTERVIEW

SYNFORM  What is the focus of your current research 
activity?

Prof. J. Huang  The research focus of our group is to develop 
new disruptive ways of molecular modification/construction. 
In particular, we are currently focusing on the development of 
strategies for the preparation of reliable molecular scaffolds 
using metal as the core element.

SYNFORM  When did you get interested in synthesis?

Prof. J. Huang  When I first worked at Tianjin Institute of 
Pharmaceutical Research (P. R. of China), we were working on 
the development of new processes for generic drugs. I found 
the real chemical world is a little different from what we know 
from the textbook and practical course. It is challenging and 
rewarding! I started working in the unknown world tasting 
the flavor of discovery.

SYNFORM  What do you think about the modern role and 
prospects of organic synthesis?

Prof. J. Huang  I think we will have to expand the chemi-
cal space with the increase of molecular complexity!!! We 
have been a little conservative on the conventional mole cules, 
avoid ing technical problems. Challenges need be taken on 
both molecular science (design/synthesis) and molecular en-
gineering (separation/characterization).

SYNFORM  Your research group is active in the area of 
synthetic methodology and bioorganic/medicinal chemistry. 
Could you tell us more about your research and its aims?

Prof. J. Huang  We have developed a number of new stra-
tegies for the construction of heterocycles through a number 
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Young Career Focus: Professor Jianhui Huang  
(Tianjin University, P. R. of China)

Background and Purpose. SYNFORM regularly meets young up-and-coming researchers who are  
performing exceptionally well in the arena of organic chemistry and related fields of research, in order to  
introduce them to the readership. This Young Career Focus presents Professor Jianhui Huang (Tianjin  
University, P. R. of China).

Biographical Sketch

Jianhui Huang is from Tianjin (P. R. 
of China). He received his B.A. de-
gree in analytical chemistry from 
Hu’nan University (P. R. of China) in 
2000. He decided to study  abroad 
 in 2003 and received his Ph.D. 
in chemistry from the University 
of York (UK) under the guidance 
of Professor Peter A. O’Brien. In 
2007, he moved to the University 
of Sheffield (UK) working with Pro-
fessor Joseph P. A. Harrity on the 

cyclo addition reactions of alkynyl boronates. He started his 
independent research in 2010 when he returned to China 
and joined the faculty as an Associate Professor of Medicinal 
Chem istry in the School of Pharmaceutical Science and Tech-
nology at Tianjin University (P. R. of China).

His research interest covers the development of new syn-
thetic tools and design/synthesis of useful metal-containing 
scaffolds for medical purposes. Other interests include enter-
taining his daughter Agnes and pipe making.

Prof. J. Huang
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Scheme 1 Pd-catalyzed synthesis of various heterocycles via C–H activation

Scheme 2 Selective arene functionalization

of key transition-metal-catalyzed C–H activation annulation 
reactions. These methods were successfully applied to the 
synthesis of isoquinolones,1 isoindolones2 and tetrahydroiso-
quinolones3 (Scheme 1).

Our aims are simply to make compounds by late-stage 
functional group introductions to design and create molecules 
covering new chemical spaces, in particular, the preparation 
of stable organometallic/inorganic drug-like molecules (a ma-
jor part of our current research focus).

SYNFORM  What is your most important scientific  
achievement to date and why?

Prof. J. Huang  We have focused on regioselective arene 
functionalizations. More specifically, we were able to promote   
a meta-selective bromination of arenes using ruthenium 
catal ysis (Scheme 2).4 These approaches have provided new 
tools for molecular design in much more efficient ways.
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The Suzuki–Miyaura cross-coupling reaction is an indispens-
able synthetic tool for modern organic synthesis to assemble   
biaryls, which are ubiquitous in useful substances such as 
pharma  ceuticals, agrochemicals, and materials. One avenue 
of ongoing research to improve the practicality of the trans-
formation is to seek aryl electrophiles alternative to aryl 
 halides to avoid halogen contaminations in products and 
 wastes as well as to streamline and diversify chemical pro-
cesses to  access biaryls. While many different aryl electro
philes such as aryl esters, aryl ethers, aryl carboxylic acid 
deriva tives, and aryl ammonium salts have been introduced 
for the Suzuki– Miyaura cross-coupling in the last decade, no 
successful report has been available for the use of nitroarenes 
as the  coupling partner. Recently, a research endeavor led by 
Professor  Shigeyoshi Sakaki (Fukui Institute for Fundamental 
Chem istry, Kyoto University, Japan) and Professor Yoshiaki 
Nakao (Kyoto University, Japan) showed for the first time that 
nitro arenes can be viable aryl electrophiles for the Suzuki– 
Miyaura cross-coupling reaction. “Nitroarenes are common 

synthetic building blocks in chemical processes and often 
serve as start ing materials to derivatize aromatic compounds 
because  nitration is one of the most reliable and established   
methods to functionalize arenes,” said Professor Nakao. 
 Classical processes involving nitration followed by reduction, 
diazotization, and the Sandmeyer reaction are still running in 
the chemical industry. “For this reason, the use of nitroarenes 
for the cross-coupling chemistry is highly desirable because 
the method could exclude the classical multi-step processes to 
functionalize arenes (Scheme 1),” said Mr. Takanori  Miyazaki 
from the TOSOH corporation, one of the co-authors of this 
work.

“We have come up with very simple reaction conditions 
employing Buchwald’s BrettPhos as a key ligand to enable the 
palladium-catalyzed Suzuki–Miyaura cross-coupling reaction 
of nitroarenes (Scheme 2),” explained Mr. Miyazaki. He con-
tinued: “The reaction requires a relatively higher temperature 
compared to the cross-couplings of aryl halides due to reluc-
tant oxidative addition of the C–NO2 bond of nitroarenes, but 

A185

The Suzuki–Miyaura Coupling of Nitroarenes

J. Am. Chem. Soc. 2017, 139, 9423–9426

Scheme 1 Comparison of chemical processes to access biaryls starting from nitroarenes
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no exotic or complex reagents or conditions have been  utilized 
to achieve the new reaction. We indeed planned to develop 
this reaction as a user-friendly process as we knew the po-
tential value of the methodology, if available.” Never imagin-
ing that standard cross-coupling conditions would work, and 
since many papers had already been published showing that 
nitroarenes are poor substrates for the reaction, one of the 
other authors, Dr. M. Ramu Yadav, started to screen more so-
phisticated systems such as the use of other transition metals 
and multiple metal catalysts to tackle the reaction.

“There was actually a key finding available in the litera-
ture, previously described by the Fors and Buchwald group, 
who reported the nitration of aryl halides by palladium/  
t-Bu-BrettPhos catalysis (J. Am. Chem. Soc. 2009, 131, 12898),” 
said Professor Nakao. “In that reaction – which is the reverse 
reaction of the desired oxidative addition of Ar–NO2 (Scheme 
3) – the reductive elimination of the Ar–NO2 bond via the inter-
mediate palladium complex is a product-forming step, where-
as in our case it is a key elemental step of the cross-coupling, 
as experimentally probed by Dr. Nagaoka.” He continued: “It is 
interesting to note that the cleavage/formation equilibrium of 
the Ar–NO2 bond may be controlled by a subtle change (Cy or 
t-Bu) of the phosphorus ligands, BrettPhos or t-Bu-BrettPhos 
(Scheme 3). This aspect is currently under theoretical investi-
gation by Professor Sakaki and Dr. Zhong, who have revealed 
a full catalytic cycle of the Suzuki–Miyaura cross-coupling of 
nitroarenes using calculations supported by some experimen-
tal work executed by Dr. Nagaoka, Mr. Kashihara, and myself.”

Calculations as well as catalytic and stoichiometric ex-
perimental mechanistic studies demonstrated that the rate- 
determining step of the reaction was the oxidative addition 
step. Professor Nakao explained: “The design of novel metal 
catalysts will probably be necessary to improve the efficiency   
of this new bond-activation process, which in turn would lead 
to an improved overall utility of the new nitroarene-based 
cross-coupling reaction. This would also likely lead to the 
possibility of using a greater diversity of nucleophilic cou - 
pl ing partners, in line with the rich chemistry demonstrated 
in many previous aryl halide based cross-coupling studies.”

“Nitroarenes feature a unique reactivity due to the  
strong ly electron-withdrawing nature of the nitro group. For 
example, ortho- and para-positions of nitrobenzene can be 
 directly functionalized to install organic substituents via C–H 
arylation and vicarious nucleophilic substitution (VNS) reac-
tions, respectively,” remarked Professor Nakao. He concluded: 
“Subsequently, the nitro group can be submitted to the cou -
pl ing reaction developed in this study, enabling the synthesis 
of disubstituted benzenes (Scheme 4).”

Scheme 2 The Suzuki–Miyaura cross-coupling of nitroarenes

Scheme 3 Oxidative addition/reductive elimination of the Ar–NO2 bond by Pd/BrettPhos complexes

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

https://doi.org/10.1021/ja905768k


© Georg Thieme Verlag Stuttgart • New York – Synform 2017/11, A185–A188 • Published online: October 18, 2017 • DOI: 10.1055/s-0036-1590323

Literature CoverageSynform

A187

Scheme 4 Synthesis of disubstituted benzenes through C–H functionalization and the Suzuki–Miyaura coupling reactions of nitro-
benzene
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The laboratory of Professor Corey Stephenson at the Universi
ty of Michigan (Ann Arbor, USA) has had an interest in  lign in 
 depolymerization since 2014. “There were two main reasons 
that initially attracted our attention towards lignin: 1) its   
abund ance and unique aromatic backbone, which makes it an 
exceptional renewable source for small aromatic chemicals, 
and 2) the few examples of selective methodologies found 
in the literature regarding its depolymerization, a majority 
of them employing harsh conditions due to its recalcitrant 
nature (Scheme 1),” explained Professor Stephenson. He con
tinued: “Since the major interest of my laboratory focuses on 
harnessing the energy of visible light, we saw the opportunity 
of using photoredox catalysis to selectively cleave the β–O–4 
bonds present in the lignin backbone, a methodology that 
 proved to be exceptionally robust for lignin model systems 
(J. Am. Chem. Soc. 2014, 136, 1218). However, a prior oxida
tion step was required to achieve this fragmentation, which 
prompted us to search for alternative oxidation methodolo
gies, such as the one presented in the present ACS Central 
 Science publication.”

Electrocatalytic oxidation captured the group’s atten
tion as a suitable alternative to chemical oxidation due to 

the simplicity of the reaction conditions, and the potential 
compatibility of the reaction conditions with the subsequent 
photocatalytic fragmentation. “Our initial attempts of  driving 
this oxidation in bulk in the presence of known Noxyl per
sistent radicals, such as TEMPO (2,2,6,6-tetramethylpiperid-
ine 1-oxyl) afforded low yields and irreproducible results in 
the oxidation of lignin model systems,” remarked Professor 
Stephenson. With the ultimate goal in mind of developing 
a methodology that could potentially be applicable on large 
scale, the authors searched for a robust, selective and inex
pensive catalyst. “In this regard, we found that the oxidation 
potential of NHPI (Nhydroxyphthalimide) in the presence 
of a base, such as 2,6-lutidine, was relatively low (0.38 V vs 
Fc+/Fc),” said Professor Stephenson, continuing: “By simple 
 cyclic voltammetry (CV) analysis, we realized that this catal-
yst would selectively oxidize the secondary benzylic alcohol, 
leaving the pendant primary alcohol intact. This selectivity 
would give predictable fragments and cleaner fragmentation 
product mixtures.” The optimization of the process required 
several months since inconsistent results were obtained when 
different solvent mixtures, bases and substrate concentrations 
were evaluated. It was not until the possible mechanism for 

A189

Redox Catalysis Facilitates Lignin Depolymerization

ACS Cent. Sci. 2017, 3, 621–628

Scheme 1 State-of-the-art of the current methodologies for the depolymerization of native lignin via oxidative (ox.), reductive 
(red.) or redox neutral approaches (ox. + red.). Adapted with permission from ACS Cent. Sci. 2017, 3, 621–628, DOI: 10.1021/
acscentsci.7b00140, Copyright 2017 American Chemical Society.
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this electrochemical oxidation was analyzed carefully that 
the group realized that the presence of molecular oxygen 
was beneficial for the catalysis. Indeed, an increased catalytic 
activity was observed in oxygensparged MeCN and also pro
vided consistent results. Another key optimization factor was 
the change of the electrolyte. “It is usually assumed that the 
role of the electrolyte in an electrochemical cell is exclusively 
to provide conductivity to the reaction mixture, acting as a 
spectator in the overall electrochemical reaction,” explained 
Professor Stephenson. “However, in MeCN we observed the 
formation of a red precipitate in the mixture of NHPI, 2,6-lu
tidine and NaClO4, a common electrolyte, only when the three 
components were present. This result clearly indicated the 
non-innocent role of the NaClO4 electrolyte in our reaction. 
Although we have not been able to identify the precise na
ture of this precipitate, 1H NMR analysis signals correspond
ing to both NHPI and 2,6-lutidine were observed when the 
precipitate was analyzed, indicating that part of the catalyst 
was being removed from the reaction mixture. Finally, KPF6 
proved to be a competent electrolyte since no precipitate was 
observed. Acid wash of the reticulated vitreous carbon (RVC) 
electrodes used in the reaction helped to provide more con
sistent results, which we believe is due to the introduction of 
oxygenated groups on the carbon surface.”

Surprisingly, the compatibility of the catalytic electro
chemical oxidation with the group’s previously reported 
photocatalytic fragmentation methodology was exceptional 
and the authors were happy to observe that no further optim
ization was required. Furthermore, they did not even need any 
workup after the oxidation in order to perform the subsequent 
photocatalytic fragmentation. “Indeed, we decided to carry 
out the fragmentation in flow to further prove the  robustness 
of the process and to shorten the reaction times since batch 
fragmentation would have required 12 hours, as opposed to 
flow where the fragmentation products were  obtained after 
only 3–4 hours,” said Professor Stephenson. “In addition, in
dustry has gained an increased interest in flow technologies 
due to their notable advantages where photo catalysis is one 
of the fields that has extensively proved to be superior,” he 
added. “With the optimized conditions (Scheme 2, A), the 
submission of the different model systems to the electroca
talytic oxidation/flow photocatalytic fragmentation in a one-
pot  fashion gave the corresponding fragmentation products in 
good yields (Scheme 2, B). Note that room temperature is used 
in both steps of the process, which is a remarkable advantage 
from the previously reported methodologies.”

Professor Stephenson revealed that the group started this 
project with the ultimate goal of making a real difference from 
known methodologies and, ideally, having an impact on the 

lignin processing industry, in pilot or even on industrial scale. 
“Moving from models to real systems is not always trivial and 
most of the time – if not every time – it requires careful re-
optimization of the process. For this reason, we decided not 
to simply keep our results to model systems, but to extend the 
use of our procedure to the fragmentation of isolated native 
lignin,” said Professor Stephenson.

As expected, moving from a model system to a native 
 lignin proved to be challenging, and all of the group’s initial 
attempts subjecting isolated lignin to the optimized onepot 
process failed. “Soon we realized that we needed to find new 
conditions for the electrocatalytic oxidation as the isolated 
 lignin was completely insoluble in MeCN,” explained Professor 
Stephenson. He continued: “We evaluated  compatible  solvent 
mixtures but none of the evaluated combinations were suc
cessful. We even tried to reoptimize the selected electrolyte 
and the concentration of all the components, but all attempts 
failed. Looking in the literature, we came across a purifica
tion procedure that we applied to our native  lignin, which 
in creased the solubility of the lignin by removal of some in
soluble impurities, and after several attempts, we were able 
to obtain a  homogeneous reaction mixture using an acetone– 
DMSO (98:2) solvent combination. After this small alteration, 
the  reaction profile completely changed and we were able to 
detect the oxidation of the lignin through heteronuclear  single 
quantum coherence spectroscopy (HSQC) analysis.”  Taking 
advantage of the homogeneity of the oxidized reaction mix
ture, the flow fragmentation occurred smoothly as  observed 
by HSQC anal ysis of the product mixture. GCMS traces of 
this final mixture revealed the presence of the monomeric 
units 6 and 7, fragments that have the same nature as the 
ones  observed from the fragmentation of the model systems 
(Scheme 2, C). “Remarkably, no other types of monomers were 
detected, which highlights the selectivity of this procedure 
towards the oxidation of the benzylic alcohol of the β–O–4 
linkage versus the pendant primary alcohol,” said Professor 
Stephenson.

“So far, this procedure has proven to be highly sensitive 
in our hands when using different batches of native lignin 
regarding the electrocatalytic oxidation step, which  switches 
off the moment the reaction mixture becomes slightly hetero-
geneous,” continued Professor Stephenson, adding: “We be
lieve that this is a consequence of the presence of small 
impurities in the native lignin. We are conscious that this re
striction currently limits the potential use of the developed 
methodology on larger scales because the lignin obtained 
from industrial processing does not have the same purity 
required for this procedure.” Professor Stephenson believes 
that although hitherto undiscussed, these challenges faced 
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in  processscale valorization of lignin may act as a callto
action for innovations in lignin extraction methods, which 
are  mainly re sponsible for impurities and functional group 
manipulations that may impede known chemical processes. 
“In addition, electrocatalysis of organic processes is not fully 
implemented in industry because of the intrinsic increased 
resistance that a nonaqueous electrochemical cell possesses 
on large scale,” said Professor Stephenson. “However, we hope 
that the  notable advantages of electrocatalytic versus chemi
cal processes will soon be recognized and further resources 
will be aimed to achieve more efficient organic electrochemi
cal transformations on large scale. In addition, since the pho
tocatalytic step in this procedure proved to be efficient in flow, 
we believe that further investment in flow electrocatal ytic 
cells that avoid the use of electrolytes will be compatible with 
our procedure,” added Professor Stephenson. He con cluded: 
“Ideally, we can envision that a complete flow process at no
tably mild reaction conditions at room temperature could 
ultimately be realized in a nottoodistant future to provide 
aromatic commodity chemicals from lignin.”

Scheme 2 Summary of the most relevant results. A) General optimized reaction conditions; B) Selected examples of dimeric model 
systems; C) Selected results of the application of the procedure to native lignin isolated from pine shavings. NHPI: N-hydroxyphthal-
imide; DIPEA: diisopropylethylamine; HAT: hydrogen atom transfer; ID: internal diameter. Adapted with permission from ACS Cent. 
Sci. 2017, 3, 621–628, DOI: 10.1021/acscentsci.7b00140, Copyright 2017 American Chemical Society.
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