Significance: Wang and co-workers describe a kilogram-scale asymmetric synthesis of intermediate \(\text{H} \) en route to omarigliptin, a DPP-4 inhibitor that is of interest for the treatment of diabetes. The key steps in the synthesis depicted are (1) the diasteroselective substrate-controlled Meerwein–Ponndorf–Verley reduction of \(\alpha \)-amino-ketone \(\text{C} \) and (2) the stereoselective intramolecular 5-exo-dig iodoetherification of alkynol \(\text{E} \).

Comment: Synthesis of \(\text{A} \) began with the asymmetric \(\alpha \)-alkylation of nickel(II) complex \(\text{I} \) with 3-chloro-1-propyne. The choice of solvent and temperature was critical to achieve a reproducible conversion and high stereoselectivity for this alkylation. Best results were obtained using sodium hydroxide in DMF at \(-10^\circ\text{C}\). At the end of the reaction, water was added to the reaction mixture, and product \(\text{J} \) crystallized out from the aqueous media.