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Dear Readers,

Don’t you have the feeling that our job of publishing 
research articles is becoming increasingly difficult, while 
editors and reviewers – regardless of the impact factor 
of the journal – have increasingly and unreasonably high 
expectations and demands? Well, I do. Medicinal and 
biological chemistry is an area where this issue is becom-
ing particularly serious. Trying to publish the results of 
exploratory pilot work without having in vivo data (on 
some sort of animal model) is getting increasingly chal-
lenging even in journals that only a decade ago would let 
authors get away with just a handful of in vitro tests or not 
even that. But authors in other areas – such as synthetic 
methodology – are certainly not in a better situation, with 
editors and reviewers having all sorts of often unreason-
able demands and requests to perform additional experi-
ments, provide further data and, last but not least, a 
subliminal pressure to make bigger and bolder claims for 
attracting more readers and citations to the journal. The 
latter is a particularly worrying trend towards a general-
ized sensationalistic mood, which is nowadays widespread 
among publishers and reviewers. Take a look at certain 
‘Table of Contents’ abstracts and you will immediately 
see what I mean… So, in order to get a paper accepted 
for publication, authors are increasingly pressurized to 
do something sensational, or make hyperbolic claims, or 
rush into unduly bold claims and conclusions. The good 
old robust, humble and cautious research work that builds 
solid evidence step by step, piece after piece, publication 
after publication, is not cool any more: you won’t get far 
with that in the impact factors age… Am I being too pes-
si mistic and even old-fashioned? Maybe, but this is only 
one aspect of a progressively deteriorating publishing and 
peer-review system, and in the next few editorials I’ll  
gladly make more examples. Meanwhile I’d like to invite 
you to send me your thoughts and experience on the 
subject, by writing to synform@outlook.com. 
Luckily, there is no need to make sensational claims for the 
chemistry presented in SYNFORM: because it is sensatio-

nal! The SYNTHESIS Highlight by Y. Tanabe (Japan) kicks 
off this March issue, followed by a contribution on a  
Science article by T. P. Yoon (USA). The next article covers 
a Nat. Commun. article by S. Chang (South Korea) on a 
novel synthesis of silicon-substituted synthetic intermedi-
ates. The issue finale is assigned to G. Manolikakes (Ger-
many) who is the protagonist of the Young Career Focus 
interview.

Enjoy your reading! And remember: we look forward to 
receiving your thoughts and comments!!
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Regio- and stereocontrolled syntheses of (E)- and (Z)-stereo-
defined all-carbon-substituted olefins are of pivotal import-
ance and highly challenging tasks in organic synthesis. Recent 
comprehensive reviews address the impressive progress in 
this area.1

Strategies based on stereoretentive cross-coupling reac-
tions using (E)- and (Z)-stereodefined ‘not fully’-substituted 
(R1 or R2 = H in Scheme 1) enol tosylates – which have inter-
esting synthetic applications (see for example Figure 1) – are 
reliable toward this end.

A General and Robust Method for the Preparation of (E)- and  
(Z)-Stereodefined Fully Substituted Enol Tosylates: Promising 
Cross-Coupling Partners

Synthesis 2016, 48, 4072–4080

Scheme 1 (E)- and (Z)-Stereocomplementary enol tosylations of ‘not fully’-substituted β-keto esters

Figure 1 Synthetic applications of ‘not fully’-substituted (E)- and (Z)-enol tosylates
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“For the preparation of (E)- and (Z)-enol tosylate cross-
coupling partners, a group at the Merck company consistent-
ly utilizes a Ts2O/amine system for preparing E-configured 
and Ts2O/LiHMDS (or NaHMDS) for preparing Z-configured 
reagents (see Scheme 1),2” said Professor Yoo Tanabe at the 

Kwansei Gakuin University (Japan), “whereas in our ongoing  
studies we make use of the much more accessible TsCl/NMI 
(N-methylimidazole)/Et3N (for E) and TsCl/NMI/LiOH (or 
LiCl) (for Z) reagents.3” Professor Tanabe continued: “One of 
our procedures will be disclosed shortly in Organic Synthesis 

A39

Scheme 2 (E)- and (Z)-Stereocomplementary enol tosylations of all-carbon ‘fully’-substituted β-keto esters

Scheme 3 Representative examples of (E)- and (Z)-stereocomplementary enol tosylations (Methods A and B)
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(OS).3d The current privileged methodology has contributed to 
the successful total syntheses of some elaborated natural pro-
ducts and drug-related compounds, as depicted in Figure 1.”

According to Professor Tanabe, the article in Synthesis  
introduces a general, cost-effective, and robust protocol for 
the preparation of all-carbon (fully)-substituted acyclic enol 
tosylate scaffolds as promising stereoretentive cross-coupling 
partners (R1, R2 = alkyl and/or aryl; Schemes 2 and 3). “Switch-
ing the reagents and conditions allows for (E)- and (Z)-stereo-
complementary preparation of the corresponding enol tosyl-
ates from less reactive ‘α-carbon-substituted’ β-keto esters: 
TsCl/Me2N(CH2)6NMe2 was used for obtaining (E)-products 
(method A: total 13 examples; 63–96%, almost >98% E) and 
TsCl/TMEDA/LiCl for (Z)-products (method B: total 13 ex-
amples; 62–99%, almost >98% Z),” explained Professor Tanabe.

He continued: “All reactions were completed under iden-
tical optimized conditions in good to excellent yields. With 
regard to stereoselectivity, almost all cases produced positive 
and excellent results (>94:6 for method A and <2:98 for  method 
B). Purification up to >98% de was achieved by short column 

chromatography or by recrystallization. As a limita tion, (E)-
selectivity using α,β-diaryl substrates is only moderate. This 
tendency coincides with discussions in the preceding report3c 
which ascribes it to the intrinsically more stable nature of (Z)-
isomers. Fortuitously, these crude products could be enriched 
to the pure (E)-products (up to 98% de) by recrystallization. It 
should be noted that all of these stereodefined (E)- and (Z)-
enol tosylates are novel compounds.”

In general, these enol tosylates are relatively stable com-
pounds that exhibit favorable reactivity for various cross- 
coupling reactions, thanks to recent advances in this area.

Professor Tanabe explained: “The starting α-substituted 
β-keto esters are readily available utilizing Ti-Claisen and 
 base-mediated Claisen condensations between the same 
 esters (self-type), or Ti-promoted Claisen condensations be-
tween different esters or between esters and acid chlorides 
(crossed-type).4 α-Monoalkylation of parent β-keto esters is 
an alternative preparative method, although this is frequently 
accompanied by troublesome side dialkylation.”

As depicted in Figure 2, a careful 1H NMR monitoring ex-
periment (–40 °C in CD3CN) revealed that TsCl coupled with 
TMEDA formed a simple N-sulfonylammonium intermediate 
IA rather than a plausible N,N′-chelate-type intermediate IB. 
“The apparent downfield chemical shifts of the tosyl moiety in 
IA are related to the higher reactivity of the present system,” 
remarked Professor Tanabe. He continued: “Based on the re-
sult, IA is likely to function as the key active species. This out-
come is apparently contrary to a relevant chiral diamine-ca-
talyzed desymmetric benzoylation of meso-diols with PhCOCl 
and related hypotheses regarding the mechanism through the 
corresponding N,N′-chelate-type intermediate.5”

A plausible mechanism for the successful emergence of 
(E)- and (Z)-selectivity is depicted in Scheme 4. “The (E)-selec-
tive reaction with highly reactive intermediate I proceeds via 
a non-chelation pathway to give (E)-form; Me2N(CH2)6NMe2 
plays two different roles: that of a base reagent and also as a 

A40

Figure 2 Formation of sulfonylammonium intermediate IA by 
1H NMR monitoring measurement at –40 °C

Scheme 4 Mechanistic investigation into the (E)- and (Z)-
stereoselective enol tosylations
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partner of I through equilibrium,” explained Professor Tanabe. 
He continued: “Me2N(CH2)6NMe2 aids (E)-enolate formation 
through dipole-dipole repulsive interactions between the oxy 
anion and ester function. In clear contrast, the (Z)-selective 
reaction proceeds via a chelation mechanism to give (Z)-form; 
the Li cation facilitates (Z)-enolate formation.”

Professor Tanabe and co-worker Professor Nakatsuji con-
cluded: “The present protocol provides a useful avenue to-
wards divergent syntheses (Type I and Type II) of various 
all-carbon (fully)-substituted (E)- and (Z)-stereodefined α,β-
unsaturated ester scaffolds, which are distributed widely in 
natural products, pharmaceuticals, and supramolecules as 
key structural building blocks3e  (Scheme 5). This robust and 

distinctive method involves stereocomplementary enol to-
sylations using readily available TsCl/diamine/(LiCl) reagents. 
High substrate generality is demonstrated in two sets (all four) 
of parallel and stereocomplementary synthetic pathways. 
 Efficient parallel syntheses of zimeridine and tamoxifen were 
achieved utilizing subsequent highly (E)- and (Z)-stereoreten-
tive cross-couplings (Suzuki–Miyaura, Negishi, Sonogashira, 
and Kochi–Fürstner).” As a final note, Professor Tanabe offered 
his warmest congratulations to Professor Ben L. Feringa (Uni-
versity of Groningen, The Netherlands) on being awarded the 
2016 Nobel Prize in Chemistry.

Scheme 5 Divergent and parallel synthesis of (E)- and (Z)-α,β-unsaturated esters utilizing stereoretentive cross-couplings
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Carbonyl photochemistry is prominent in many of the most 
important reactions in photochemical synthesis. It has been 
known for many decades that the photochemical properties 
of carbonyl compounds can be modulated by Lewis acid catal
ysts. Professor Tehshik P. Yoon of the University of Wisconsin–
Madison (USA) explained: “In the 1980s, Fred Lewis showed 
that the coordination of enones to oxophilic Lewis acids such 
as BF3 and EtAlCl2 could completely change the energetics of 
their singlet excited states.1 This phenomenon can result in 
changes to the UV absorption spectra of coordinated enones 
and in an increased efficiency of subsequent photocycloaddi
tion reactions. Recently, Thorsten Bach’s laboratory has ex
ploited these effects to design highly enantioselective photo
cycloaddition reactions using chiral Lewis acids”.2

The group of Professor Yoon has also been working in this 
area and the central discovery reported in their recent Science 
paper is that Lewis acids can have a similarly large impact on 
the triplet excited states of enones. Professor Yoon said: “We 
found that the coordination of Sc(OTf)3 to 2′hydroxychalcone 
1 results in a surprisingly large decrease in the energy of its 
first excited triplet state. When 1 is irradiated in the presence 
of Sc(OTf)3 and Ru(bpy)3

2+, triplet energy transfer is thermody
namically feasible from photoexcited Ru*(bpy)3

2+ only to the 

Lewis acid coordinated assembly, and not to the free chalcone 
(Scheme 1).”

This result opens up the possibility of chiral Lewis acid ca
talysis of triplet sensitization. “When a chiral pybox Sc(OTf)3 

complex is used in combination with Ru(bpy)3
2+, we are able 

to synthesize highly enantioenriched cyclobutanes using rela
tively low concentrations of both cocatalysts,” said Professor 
Yoon (Scheme 2). He continued: “A large part of this investiga
tion involved the optimization of this system and an explor
ation of the variety of chalcones and dienes that participate in 
the reaction.”

Professor Yoon explained: “We think that this strate
gy for asymmetric catalysis is important for a few different 
 reasons. First, this is another example of highly enantiose
lective photochemistry using tandem photocatalysis, a topic 
that my laboratory has been interested in for several years.3 
We think that one of the major benefits of using a separate 
enantiocontrolling catalyst, that is chemically distinct from 
the photochemically active moiety, is that the structure of the 
chiral controller can be optimized extensively without signifi
cantly altering the photochemical behavior of the photocatal
yst.” He con tinued: “In addition, the transformation we have 
dis covered is an  example of a triplet photosensitization reac

Enantioselective Photochemistry through Lewis Acid Catalyzed 
Triplet Energy Transfer

Science 2016, 354, 1391–1395

Scheme 1 Conceptual scheme for Lewis acid catalyzed triplet energy transfer
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tion. One advantage of photosensitized reactions over  direct 
photochemical reactions is that the reactive triplet state can 
be accessed without first passing through a singlet excited 
state. The reactivity of enones in their singlet excited states  
can be substantially different from those in their triplet   
states –  for instance, the regiochemical outcomes can differ, 
and the quantum yields of singlet and triplet photoreactions 
can be quite different, particularly in intermolecular reac
tions where the shorter lifetimes of singlet states can be es
pecially problematic. By bypassing the singlet state and di
rectly access ing the organic triplet, we were able to focus on 
optimiz ing the chemistry of the triplet state photoreaction 
without having to worry about any negative impacts on the 
singlet photochemistry.”

Professor Yoon revealed that their initial observation of 
this reactivity was accidental. “We were investigating  whether 
photoredox activation of the hydroxychalcone substrates 
might lead to Diels–Alder cycloaddition reactions, along the 
lines of what Porco had reported a few years ago using chemi
cal redox catalysts,4” explained Professor Yoon. He continued: 
“In our first few experiments, although we did observe some 
formation of the [4+2] cycloadducts that Porco described, 
the main products of these reactions were these unexpected 
cyclo butanes described in our Science paper. I was, frankly, a 
little irritated at first. I had planned to apply the Diels–Alder 
reaction to a total synthesis project, for which the [2+2] pro
ducts were not at all useful. Moreover, I really did not under
stand how these cyclobutanes were forming. I kept proposing 
possible trivial explanations, and Travis (i.e. Dr. Travis R. Blum, 
first author of the article, then Ph.D. student) kept running 
control experiments to disprove my hypotheses.”

Professor Yoon remarked: “There have only been a few 
other times in my career to date when a morass of confusing 
empirical data has suddenly resolved into a clear and coherent 
picture. It’s a delightful feeling, especially when the conclu
sion is more interesting than the problem we were originally 
attempting to solve. After making multiple observations that 
seemed inconsistent with photoredox activation, the ultimate 
inescapable conclusion that emerged was that we were ob
serving Lewis acid catalyzed triplet energy transfer. We were 
excited by this realization because this mechanism seemed to 
really represent a fundamentally new physical effect that had 
not previously been characterized. As much work as it was to 
complete the synthesis and characterization work for this pa
per, we spent just as much effort convincing ourselves that the 
mechanistic picture we were proposing was reasonable. We 
ended up needing to collaborate with Desiree Bates, a compu
tational chemist in our department, to learn to estimate the 
energies of organic excited states using DFT computations. We 
also had to go outside of our department to find a spectrome
ter capable of detecting the weak, lowenergy emission that 
we think is arising from the lowenergy triplet states that we 
are accessing.”

From a different perspective, Professor Yoon pointed out 
that the control of stereochemistry in photochemical reac
tions has long been recognized as a difficult problem. He said: 
“Some of the earliest attempts to control the enantioselectivi
ty of photochemical reactions date back to the1930s,5 but for 
a long time, there was a persistent belief that the reactivity of 
highly photoexcited molecules was simply too uncontrollable 
to ever be amenable to asymmetric catalysis in any general 
way. This belief has only been disproven within the last de

A45

Scheme 2 Enantioselective catalytic triplet sensitization reactions
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cade or so.6 Therefore we think any new strategy for enantio
selective catalysis of photochemical reactions remains inter
esting, particularly when they involve excited state or ganic 
intermediates.”

“I’m proud of this paper, and I’m even more proud of the 
way that the story came together. This was a project that we 
might have missed entirely had Travis not been curious about 
a set of anomalous results. We learned a lot about character
izing and investigating the properties of excited states,” said 
Professor Yoon. He concluded: “The next steps will be to de
velop applications for this reactivity, which is something we 
are actively pursuing at the moment. We are also curious to 
know how general this phenomenon is. If we can show that 
the tripletlowering effect of Lewis acids on carbonyl com
pounds is general and not in some way specific to this class of 
2hydroxychalcone substrates, I think we might have a really 
robust way to control the stereochemistry of excitedstate or
ganic photoreactions.”
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A number of transition-metal complexes are known to effi-
ciently catalyze hydrosilylation of unsaturated functionalities 
including C=O, C=N and C=C bonds, largely via inner- or outer-
sphere pathways. Representatively, a series of platinum-based 
hydrosilylation catalysts (e.g. Karstedt’s catalyst) display  
powerful and selective catalytic performance, especially in 
hydrosilylation of alkenes, thus enabling large-scale syn - 
thes is of various alkyl silanes in industry. However, most of 
the presently available hydrosilylation processes rely on the 
use of expensive transition metals (Rh, Ir, Pt, or Pd). In this 
regard, certain Lewis acids such as B(C6F5)3 have drawn sig-
nificant attention as catalysts due to their practical merits. 
In 1996, the Piers group first reported the B(C6F5)3-catalyzed 
hydrosilylation of aromatic aldehydes, ketones, and esters (for 
references see the original Nat. Commun. article). Since then, 
the B(C6F5)3 catalyst system has been shown to be effective not 
only for hydrosilylation of unsaturated functionalities but also 
for reductive sp3-C–X bond cleavage (X = O, S, or halides) using 
hydrosilanes. The Park and Chang group from the Institute for 
Basic Science and KAIST (Daejeon, South Korea) recently re-
ported the B(C6F5)3-catalyzed dearomative silylative reduction 
of quinolines and pyridines leading to (partially) saturated 
azacyclic products having sp3-C–Si bonds beta to the nitrogen 
atom. Subsequently, they also showed that α,β-unsaturated 
nitriles and esters can undergo a selective silylative reduction.

Continuing their efforts along these lines, Professor Chang 
and co-workers turned their attention to furans, one of the 
representative biomass-derived chemicals, mainly due to 
the fact that furans are predicted to undergo reductive cleav-
age serving as various types of carbon sources. The Chang 
group envisioned that B(C6F5)3 would be capable of catalyz-
ing a hydro silylative transformation of furans. Professor Chang 

said: “The unique reactivity of B(C6F5)3/hydrosilane toward the 
sp3-C–O and sp2-C=C bonds initially made us curious about 
which products could be generated from furans under the 
B(C6F5)3-mediated hydrosilylation conditions.” In a prelimina-
ry reaction, 2-methylfuran (I) was subjected to the B(C6F5)3-
catalytic conditions to reveal that I underwent ring-opening 
with PhMe2SiH, leading to the corresponding alkenyl silyl 
ether bear ing an sp3-C–Si bond alpha to the oxygen atom (II). 
Interestingly, the double bond in the product was deter mined 
to be exclus ively Z. “Such an unprecedented ring-opening pro-
duct with excellent chemo-, regio-, and stereoselectivities 
under mild metal-free conditions is considered to be excep-
tional, and it also caught our attention with regard to the me-
chanistic path way,” remarked Professor Chang. Through a set 
of optimization studies, the authors found that as little as 2.0 
mol% of B(C6F5)3 with 2.05 equivalents of PhMe2SiH allowed 
for quantitative silylative ring opening of I at room tempera-
ture within ten minutes (Scheme 1).

“More interestingly, when one more equivalent of 
 PhMe2SiH was added into the reaction mixture, we observed 
an exothermic reaction with a new product formation,” said 
Professor Chang. He continued: “The structure of this new 
compound was identified to be a silylated cyclopropane (III) 
with exclusive anti-diastereoselectivity with the formation of 
a stoichiometric amount of disiloxane by-product.”

To gain mechanistic insights, the Chang group conduct-
ed an NMR study in a reaction of 2-methylfuran (I) with 
 PhMe2SiH (4.0 equiv, Scheme 2). “Low-temperature NMR 
monitoring was a useful analytical technique especially for a 
rapid cascade transformation as in this case,” remarked Pro-
fessor Chang. He continued: “The reaction was observed to 
proceed smoothly at –70 °C leading to (Z)-α-silyloxy alkenyl 

Borane-Catalyzed Ring-Opening and Ring-Closing Cascades of  
Furans Leading to Silicon-Functionalized Synthetic Intermediates

Nat. Commun. 2016, 7, 13431

Scheme 1 B(C6F5)3-catalyzed silylative ring-opening and ring-closing cascade of 2-methylfuran (I)
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silane (II) quantitatively over 3.5 hours. Upon further warming 
to room temperature, the in situ generated intermediate II was 
converted into the corresponding silylated cyclopropane (III). 
These results clearly indicated that the ring-opening and ring-
closing cascade of 2-methylfuran (I) proceeded under perfect 
kinetic differentiation.”

With this mechanistic depiction, Chang and co-workers 
explored the substrate scope (Scheme 3). Professor Chang 
said: “We were pleased to see that a variety of 2-substituted 
furans were transformed into a single product of α-silyloxy-
(Z)-homoallylsilanes in high yields under standard conditions 
with excellent stereoselectivity (Z/E > 99:1, Scheme 3; Condi-
tions A).” Professor Chang also said: “In agreement with the 
kinetic behavior observed in the low-temperature NMR study, 
a range of 2-substituted furans were smoothly converted into 
anti-2-alkylcyclopropyl silanes at room temperature in good 

to high yields irrespective of their electronic and steric varia-
tions when PhMe2SiH (4.0 equiv) was used in the presence of 
B(C6F5)3 (5.0 mol%) catalyst (>99% anti-selectivity, Scheme 3; 
Conditions B).”

Subsequently, Professor Chang and co-workers found that 
the present B(C6F5)3 catalysis was applicable for the silyla tive 
ring opening of additional furan derivatives, providing the 
corresponding silylated products in good yields (Scheme 4). 
“It is notable that the chemoselectivity was altered depend-
ing on the position of substituents on the furan substrates, 
thus delivering a range of various ring-opening products,” 
 remarked Professor Chang.

In addition, Professor Chang and co-workers demonstrat-
ed the synthetic utility of two types of products obtained 
through the present B(C6F5)3-catalyzed hydrosilylation cas-
cade of furans (Scheme 5). Professor Chang explained: “The 

A49

Scheme 2 Borane-catalyzed ring-opening and ring-closing cascade of furans giving rise to synthetically valuable silicon compounds 
with 1H NMR monitoring of this process (Si = SiMe2Ph)
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Scheme 3 B(C6F5)3-catalyzed cascade silylative transformation of furans (Si = SiMe2Ph)

Scheme 4 B(C6F5)3-catalyzed silylative ring opening of alkyl furans and benzofurans (Si = SiMe2Ph, R3 = 4-TIPSO-C6H4, TIPS = triiso-
propylsilyl)
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obtained products of α-silyloxy homoallylsilanes and anti-
2-alkylcyclopropyl silanes possess synthetic building units 
which are readily transformed into other synthetically valu-
able functional groups. Therefore, the synthetic utility of the 
present method could be potentially broad in synthetic and 
medicinal chemistry.”

“In conclusion, chemodivergent catalytic transformations 
of furans have been developed to furnish synthetically valu-
able silicon-functionalized products, α-silyloxy-(Z)-alkenyl 
silanes and anti-cyclopropyl silanes with excellent diastereo-
selectivity,” said Professor Chang. He also noted: “The mechan-
istic pathway of this cascade reaction was well elucidated by 
a series of mechanistic experiments.” Finally, he commented: 
“The present procedure showcases an example of biomass 
conversion to provide synthetically valuable chemicals under 
extremely mild and convenient conditions without requiring 
transition-metal species.”

Scheme 5 Enrichment and elaboration of products (Si = SiMe2Ph, Si = SiPh2H/SiMe2Ph)
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INTERVIEW

SYNFORM  What is the focus of your current research 
activity?

Dr. G. Manolikakes The central theme in my research 
group is the development of new, efficient and highly modular 
methods for the construction of complex organic mole cules 
from relatively simple starting materials. Our fundamental 
approach can be considered as a functional group based ap-
proach. We start with the identification of specific functional 
groups or structural motifs, which are prevalent in biologi-
cally active compounds. Then we look for novel, more effi
cient, sustainable or perhaps still undiscovered methods for 
the construction of these substructures. Our current research 
can be divided into two major areas: (i) the development of 
sulfur dioxide based three-component reactions for the syn-
thesis of sulfones and sulfonamides; and (ii) new methods for 
the sustainable and stereoselective construction of amines 
and αamino acids.

SYNFORM  When did you get interested in synthesis?

Dr. G. Manolikakes My interest in chemistry started in high 
school. In the last two years of high school I had the oppor-
tunity to spend some time in the school lab and conduct my 
first own, very small but still independent research project. In 
the course of this project I became fascinated by the combina-
tion of theoretical knowledge and practical application of this 
knowledge in an experiment as well as the reverse process, 
the generation of new knowledge through well-planned and 
well-executed experiments. During my chemistry studies I 
got more and more interested in organic synthesis, its creative 
power to build very complex molecules and the underlying 
logic based solely on molecular reactivity. To date I am thrilled 
by the fact that we can purposefully design and synthesize so 
far unknown molecules with distinct properties starting from 

Young Career Focus: Dr. Georg Manolikakes 
(Goethe-Universität Frankfurt, Germany)

Background and Purpose. SYNFORM regularly meets young up-and-coming researchers who are  
performing exceptionally well in the arena of organic chemistry and related fields of research, in order 
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some sketches on a plain paper (or on an empty space in a 
conference program or a paper tissue).

SYNFORM  What do you think about the modern role and 
prospects of organic synthesis?

Dr. G. Manolikakes Although organic synthesis has seen 
tremendous developments over the last 100 years, its main 
purpose is still the same: the synthesis of organic compounds 
for all aspects of human life. We should always keep in mind 
that we as synthetic chemists are creative scientists with the 
unique ability to interconvert simple matter into molecules 
that matter for humanity. I believe that organic synthesis to-
day is facing two major challenges (or rather opportunities): 
how we synthesize molecules and the synthesis of new mo-
lecules for new applications. The development and imple-
mentation of more sustainable processes and the utilization 
of renewable raw materials should (and will) be a major focus 
in modern organic synthesis. At the same time, we have to 
use our ability to create new molecules with new functions 
to meet the ever-changing needs of society. The second task 
can only be addressed in collaborative projects with other 
 scientists from all other disciplines, such as biology, physics or 
medicine. Synthetic chemists and their knowledge of how to 
design and control function at the molecular level are central 
to these multidisciplinary research projects.

SYNFORM  Your research group is active in the area of 
 organic synthesis, especially using organometallic reagents. 
Could you tell us more about your research and its aims?

Dr. G. Manolikakes Our main focus is the developments 
of new methods for the efficient and modular synthesis of 
specific substructures and not a certain type of methodology. 
Anything or rather any method goes, as long as we reach our 
fundamental goals. However, we rarely meet our final objec-
tives in one step. In general, this is an iterative process. Our 
recent developments of one-pot reactions for the synthesis of 
sulfones with sulfur dioxide as key building block are a good 
example. We started indeed with organometallic reagents, 
partially due to my strong background in this area. But after 
the establishment of certain reactivity profiles, we moved on 
to incorporate the direct functionalization of C–H bonds in 
order to develop more sustainable approaches. And we will 
continue to devise more efficient methods until we reach our 
final goal, a completely sustainable and highly modular syn-
thesis of sulfones and sulfonamides. In the same manner we 
could develop new methods either for a sustainable or for a 
stereoselective synthesis of amines and αamino acids. Now 
we have to merge both developments to reach a green and ste-
reoselective synthesis. In addition, we are starting to explore 
the application of our methods for the preparation of mole-
cules with distinct properties for multidisciplinary research 
projects in medicine and materials science. My co-workers 
and I are very happy to see that some of our compounds show 
very promising biological activities.

Scheme 1 Overview of research projects in the Manolikakes group
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SYNFORM  What is your most important scientific 
 achievement to date and why?

Dr. G. Manolikakes Given that I still stand at the beginning 
of my career, I hope my most significant achievements still lie 
in the future. Nonetheless, I believe that with our contributions 
in the fields of sulfur dioxide chemistry and amine synthesis, 
many of them highlighted in Synfacts or Org. Process Res. Dev., 
we are well on track towards our ultimate goal, universal tools 
for the sustainable synthesis of complex mole cules containing 
either a sulfonyl or an amine moiety. However, we are only at 
the beginning of this process. My biggest hope is that one day 
at least one of my methods will be used for the synthesis of a 
molecule that will benefit society as a whole.
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Further highlights

  Review: Syntheses of Biologically Active 2-Aryl-
cyclopropylamines
(by J. Yamaguchi and co-workers)

  Account: 3-Acyltetramic Acids: A Decades-Long 
Approach to a Fascinating Natural Product Family
(by M. Petermichl and R. Schobert)
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