Synthesis of an Atropisomeric HIV Integrase Inhibitor

Significance: The first-generation synthesis of HIV-1 integrase inhibitor \(\text{N} \) proceeded in ten steps and 14% overall yield on a multikilogram scale from unsaturated sulfoxide \(\text{A} \). The second-generation synthesis depicted also proceeded in ten steps, but in an improved 28% overall yield. Both routes share a common intermediate (\(\text{G} \)) and feature the construction of the challenging eight-membered ring via an intramolecular N-alkylation that does not require isolation of any intermediates.

Comment: Compounds \(\text{M} \) and \(\text{N} \) displayed hindered rotation about the amide bond that permitted separation of the atropisomers. In ethanol, pure atropisomer \(\text{M} \) equilibrates to an 85:15 mixture of atropisomers after stirring for eight days at room temperature. The minor undesired atropisomer (\(\text{aR,4R} \)-\(\text{N} \)) displays less antiviral activity and had a markedly different pharmacokinetic profile from (\(\text{aR,4R} \)-\(\text{N} \)). The stereochemistry of the atropisomers was determined by calculation.