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1 Introduction

The chemistry of annulated azocines has not been ex-
plored in detail owing to the lack of efficient methods for
their synthesis. The only exception is azocinoindoles, which
have been investigated extensively due to the great number
of alkaloids with an azocinoindole fragment in their struc-
ture. This review highlights most recent approaches to-
wards annulated azocine derivatives published after the
year 2009; the previous review was published in 2008.1

Scheme 1  Synthesis of benzo[c]azocines
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2 Ring-Expansion Reactions

2.1 Ring-Expansion Reaction of Cyclopentane Con-
taining the 1,4-Diketone Moiety with Primary 
Amines (from 5 to 8)

In 2006 the Cristoffers group2 discovered a novel bis-
muth-catalyzed ring-expansion reaction of 1,4-diketones
with primary amines that furnished an eight-membered
ring. In 2011, they extended their relatively simple method
to the synthesis of annulated azocines. Thus, starting from

ethyl 1-oxo-indane-2-carboxylate 1, containing a 1,4-dike-
tone motif, and primary amines under the bismuth-cata-
lyzed ring-expansion reaction conditions gave benzo[c]azo-
cine derivatives 2 in moderate yields (Scheme 1).3 It was
also shown that, in some cases, the presence of bismuth ni-
trate was not essential.3

A bismuth-free strategy of ring enlargement was also
successful in the case of regioisomeric pyrido[c]azocines.4
Synthesized from commercially available materials, three
cyclopentapyridine derivatives 3, 6, and 9, containing β-oxo

Scheme 2  Synthesis of a pyrido[2,3-c]azocine
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Scheme 3  Synthesis of a pyrido[3,4-c]azocine
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ester moieties, were alkylated with phenacyl bromide to
give 1,4-diketones 4, 7, and 10. The latter were subjected to
ring-expansion reactions with methylamine giving pyri-
do[2,3-c]azocine 5 (Scheme 2), pyrido[3,4-c]azocine 8
(Scheme 3), and pyrido[3,2-c]azocine 11 (Scheme 4) in 36–
64% yield.

In 2015, a six-step sequence for the synthesis of regio-
isomeric thieno[c]azocines started from commercially
available bromothiophenecarboxylic acids was worked
out.5 Isopropyl esters of the bromothiophenecarboxylic ac-
ids were subjected to Heck reaction followed by catalytic
hydrogenation and Dieckmann condensation giving the cy-
clic β-oxo esters 12, 15, and 18, alkylation of which with
phenacyl bromide led to 1,4-diketones 13, 16, and 19. The
following step, a bismuth-catalyzed ring expansion of cy-
clopentathiophene derivatives 13, 16, and 19 with methyl-
amine, produced the target tetrahydrothieno[3,2-c]azocine
14 (Scheme 5), tetrahydrothieno[3,4-c]azocine 17 (Scheme
6), and tetrahydrothieno[2,3-c]azocine 20 (Scheme 7).
Overall yields for the final products were 25%, 16%, and 12%,
respectively.

2.2 Ring-Expansion Reaction of Annulated Tetrahy-
dropyridines under the Action of Activated Alkynes 
(from 6 to 8)

In 2002, an alkyne-induced ring-expansion reaction of
annulated tetrahydropyridines leading to the formation of
azocine rings was found.6 It is presumed that ring-expan-
sion reaction involves the Michael addition of the tertiary
N-atom in the (hetero)annulated pyridine system to the tri-

ple bond of the activated alkyne, followed by a nucleophilic
substitution (SN) reaction in zwitterionic intermediate A
(Scheme 8).

Over the last 8 years this method was successfully ap-
plied to the synthesis of various annulated azocines: triazo-
lopyrimido[4,5-d]azocines 21,7,8 tetrahydro[1]benzothie-
no[3,2-d]azocines 22,9 hexahydropyrimido[4,5-d]azocines
23 and -[5,4-d]azocines 24,10 tetrahydropyrimido[4,5-d]azo-
cines 25,11 tetrahydrobenzofuro[3,2-d]azocine 26,12 tetra-
hydrothieno[2,3-d]azocines 27,13 tetrahydroazocino[5,4-
b]indoles 28,14,15 hexahydropyrimidothieno[3,2-d]azocines
29,16,17 and benzo[d]azocines 30,18 including systems ob-
tained for the first time, tetrahydrothieno[3,2-d]azocines
3119 and tetrahydrochromeno[4,3-d]azocine 32 (Figure 1).20

Scheme 4  Synthesis of a pyrido[3,2-c]azocine
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Scheme 5  Synthesis of a tetrahydrothieno[3,2-c]azocine
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Scheme 6  Synthesis of a tetrahydrothieno[3,4-c]azocine
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Attempts to combine the aforesaid ring expansion and
Ugi or Ugi-azide transformations into a single multicompo-
nent reaction succeeded and provided thieno[3,2-d]azocine
3321 (Scheme 9) and tetrazolyl-substituted benzo[d]azocine
3418 (Scheme 10) in moderate yields.

2.3 Reductive Ring-Expansion Reaction of Cyclic 
Oximes

Using a method devised by Cho, Tokuyama, and co-
workers, regiocontrolled reductive ring-expansion of cyclic
oxime with diisobutylaluminum hydride gave benzo[b]azo-

Scheme 7  Synthesis of a tetrahydrothieno[2,3-c]azocine
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Scheme 8  Plausible mechanism for the transformation of the tetrahy-
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cine 35 and dibenzo[b,f]azocine 36 in high yields as a single
regioisomer with the nitrogen atom located in the position
neighboring the aromatic ring (Scheme 11).22–24

Based on this ring-expansion reaction of oximes, a con-
cise synthesis of 17β-HSD3 inhibitor with a dibenzoazocine
skeleton was carried out.25 All attempts to convert oximes
37a,b into a single regioisomer failed, hence a mixture of
dibenzoazocines 38a and 39a in the ratio 2:1 or dibenzoazo-
cines 38b and 39b in the ratio 6:1 was used. After acylation
of dibenzoazocines 38 and 39 the obtained regioisomers 40
and 41 were separated. Compound 40a was coupled under
the Suzuki–Miyaura coupling conditions to provide 17β-
HSD3 inhibitor 42 in 70% yield. Desulfurization of 42 with
Raney Ni gave also 17β-HSD3 inhibitor 43 (Scheme 12).
Since 17β-hydroxysteroid dehydrogenase type 3 (17βHSD3)
is an enzyme involved in testosterone biosynthesis, inhibi-
tors of 17β-HSD3 could provide new medicines for the
treatment of prostate cancer.

2.4 Other Ring-Expansion Reactions

Treatment of 1-vinyl-substituted indolinium salt 44 in
refluxing THF with the Hoveyda–Grubbs second-generation
catalyst (H-G II) resulted in allylic rearrangement to give azo-
cino[5,4-b]indole 45, the product of ring expansion, in 44%
yield (Scheme 13).26

A conceptually new and elegant strategy for the con-
struction of 1H-azocino[5,4-b]indoles 47 and 48 via a gold-
catalyzed ring expansion of 2-propargyl-β-tetrahydrocar-
bolines 46 was developed by Zhang and co-workers.27 The
azocinoindoles 47 and 48 were obtained in moderate to ex-
cellent yields. The method features mild conditions and
wide functional group tolerance (Scheme 14).

Scheme 10  Combination of ring-expansion and Ugi-azide reactions
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Binaphthyl-azocines 50 were synthesized by the direct
copper-catalyzed ring-expansion reaction of binaphthyl-
azepines 49 and α-diazocarbonyl reagents.28 This transfor-
mation is considered to be an example of a [1,2-]Stevens re-
arrangement and presents a facile access to binaphthyl-azo-
cines in moderate to high yields (Scheme 15).

Naphtho[1,8-ef]pyrimido[4,5-b]azocines 53 were pre-
pared from acenaphthoquinone (51) and 6-aminouracil de-
rivatives 52 in high yields.29 The ring expansion was carried
out as a one-pot process and included two steps: the addi-
tion reaction of starting compounds and the subsequent
oxidation cleavage of the intermediate in the presence of
Pd(OAc)4 (Scheme 16).

Scheme 16  Synthesis of naphtho[1,8-ef]pyrimido[4,5-b]azocines

Azocine 55 and annulated azocine 57 were produced by
a ring-expansion transformation of the piperidine ring of
compounds 54 and 56 under the action of methyl propyn-
oate and dimethyl butynedioate, respectively (Scheme
17).30

3 Heck Reaction

The intramolecular Heck reaction is considered to be
one of the most useful methods for the construction of me-
dium-sized heterocycles due to its functional group toler-
ance and high stereoselectivity. In 2009, the Majumdar
group developed an interesting and simple procedure for
the synthesis of various annulated azocines from unactivat-
ed allylic substrates using a combination of two reactions,
the aza-Claisen rearrangement and a palladium-catalyzed
intramolecular Heck reaction. Thus, an appropriate sub-
strate 59, prepared from N-allylanilines 58 by aza-Claisen

Scheme 13  Allyl rearrangement of 1-vinyl-substituted indolinium salt
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Scheme 15  Synthesis of binaphthyl-azocines
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rearrangement, tosylation, and alkylation with 2-bromo-
benzyl bromides, was subjected to the intramolecular Heck
reaction to give exo-Heck cyclized products, dibenzo[b,f]azo-
cines 60, in 72–79% yields (Scheme 18).31

Scheme 18  Synthesis of dibenzo[b,f]azocines via the intramolecular 
Heck reaction

This strategy was successfully used for the synthesis of
dibenzo[b,f]azocinones.32 The precursors 61 for the Heck
reaction were obtained from N-allyl-substituted anilines by
aza-Claisen rearrangement, tosylation, and amidation with
2-iodobenzoyl chloride. The products of the Heck reaction
depended on the conditions used. It was shown that
Jeffrey’s two-phase protocol32 led to endocyclic product 63
whereas phosphine-assisted standard conditions yielded
exocyclic products 62 (Scheme 19).

Scheme 19  Synthesis of dibenzo[b,f]azocines via the intramolecular 
Heck reaction

The same combined aza-Claisen rearrangement and in-
tramolecular Heck reaction was successfully applied to the
synthesis of coumarin- or quinolone-annulated azocines
6533 and pyrimidoazocines 67.34 The precursors 64 for the
Heck reaction were synthesized using aza-Claisen rear-
rangement of N-allylcoumarins or N-allylquinolones fol-
lowed by alkylation with benzyl bromides. The intramolec-
ular Heck reaction afforded azocine 65 in 75–79% yields
(Scheme 20).

Scheme 20  Synthesis of coumarin- and quinolone-annulated azocines

In the case of pyrimido[5,4-b]azocines 67, the sub-
strates 66 for the Heck reaction were prepared from 1,3-di-
alkyl-5-bromouracils by reaction with allylamine, subse-
quent aza-Claisen rearrangement, tosylation, and alkylation
with 2-bromobenzyl bromide. Pyrimidoazocines 67 were
obtained in high yields (Scheme 21).

The Majumdar group achieved another efficient and
straightforward method for the construction of dibenzoazo-
cinones 72 and coumarin- and quinolone-annulated azoci-

Scheme 17  Synthesis of azocines via transformation of the piperidine 
ring
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nones 73 via Pd-mediated reductive Mizoroki–Heck reac-
tion.35 The starting N-methyl or N-ethyl o-substituted
amines 68 and 71 reacted with 2-iodophenylacetyl chloride
giving amides 69 and 72, which were subjected to Heck re-
action producing the 8-exocyclized products 70 and 73 in
42–60% yields (Scheme 22).

Kim and co-workers obtained tetracyclic azocine sys-
tems 77 from indole derivatives 76 by applying the intra-
molecular palladium-catalyzed Heck reaction.36 The re-
quired starting materials were synthesized by the reaction
of Baylis–Hillman acetates 74 and indoles 75 (Scheme 23).

Scheme 21  Synthesis of pyrimido[5,4-b]azocines
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Scheme 22  Construction of dibenzoazocinones and coumarin- and 
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Scheme 23  Synthesis of tetracyclic azocine derivatives
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Scheme 24  Synthesis of benzo[4,5]azocino[3,2,1-hi]indoles
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Scheme 25  Synthesis of benzo[e]imidazo[4,5,1-kl][1]benzoazocines
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Application of this protocol to compounds 79, 82, and
85, derived from the reaction of Baylis–Hillman acetate 74
with isatins 78, benzimidazoles 81, and carbazole 84, re-

spectively, resulted in the formation of tetra(penta)cyclic
azocines, benzo[4,5]azocino[3,2,1-hi]indoles 80 (Scheme
24), benzo[e]imidazo[4,5,1-kl][1]benzoazocines 83
(Scheme 25), and benzo[4,5]azocino[1,2,3-jk]carbazole 86
(Scheme 26).37

Martin and co-workers synthesized azocino[3,4,5-cd]in-
doles 88 + 89 and 91 by Pd-catalyzed microwave-assisted
Heck reaction from allylamine derivative 87 or enamine 90
(Scheme 27).38

The unusual Heck product azocino[4,3-b]indole 93, re-
sulting from an apparent 7-endo-cyclization with inversion
of the ethylidene configuration, was obtained from cyclo-
hepta[b]indole 92 in 43% yield (Scheme 28).39

A readily separable mixture (1.3:1.0) of bridged ben-
zoazocines 95 and 96 was formed through an intramolecu-
lar microwave-assisted Heck cyclization from azepine de-
rivative 94 (Scheme 29).40

Dibenzo[b,f]azocine 98 was produced via microwave-
assisted Heck coupling from bifunctional precursor 97 pre-
pared by vinylation of bromobenzaldehyde and subsequent
reductive imine condensation with the relevant 2-bro-
moaniline.41 Dibenzo[b,f]azocine 98 was also synthesized
by a Suzuki–Heck cascade and also by a one-pot prepara-
tion (Scheme 30).41

Starting from propargylamide 99, a novel protocol for
the tandem Heck–Suzuki reaction was used for the con-
struction of the benzoazocines 100 and 101 (Scheme 31).42

Scheme 26  Synthesis of benzo[4,5]azocino[1,2,3-jk]carbazole
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Scheme 27  Synthesis of azocino[3,4,5-cd]indoles by Pd-catalyzed mi-
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4 Cycloaddition

In 2009, Rovis and co-workers developed the first enan-
tioselective rhodium-catalyzed [4+2+2] cycloaddition of
terminal alkynes 102 and dienyl isocyanates 103 leading to
the formation of bicyclic azocines 104 and 105.43 Pyrro-
lo[1,2-a]azocines 104 and 105 were obtained in good to
high yields and excellent enantioselectivity (Scheme 32).
The geometry of the diene moiety had a significant effect
on the selectivity of the products and used pure (E)-diene
was used as the starting substrate.

A new and simple synthesis for azocine derivatives 108
by [6+2] cycloaddition reaction was suggested by Saito and
co-workers.44 Electron-deficient allenes 107 reacted with
2-vinylazetidine 106 giving azocines 108 in moderated
yields (Scheme 33).

Louie and co-workers demonstrated in 2012 that azeti-
din-3-ones 110 under the action of diynes 109 underwent a
Ni/IPr-catalyzed cycloaddition reaction leading to dihy-

Scheme 30  Synthesis of dibenzo[b,f]azocine by a Suzuki–Heck cascade
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Scheme 31  Synthesis of benzoazocines 100 and 101 via a Heck–Suzuki 
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Scheme 32  Synthesis of pyrrolo[1,2-a]azocines
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droazocinones 111 (Scheme 34).45 The method involves a
Csp2–Csp3 bond-cleavage step that proceeds at low tem-
peratures.

Scheme 34  Synthesis of dihydroazocinone derivatives

In 2013, Louie and co-workers reported the Ni/P(p-
Tol)3-catalyzed cycloaddition of 1,3-dienes 112 and azeti-
din-3-ones 113 yielding 1,4,7,8-tetrahydroazocin-2(3H)-
ones 114 (Scheme 35).46

Bower and co-workers reported a direct approach to
substituted azocinediones 116 by a Rh-catalyzed cycloaddi-
tion–fragmentation process.47 Exposure of N-cyclopropyl-
acrylamides 115 to phosphine-ligated cationic Rh(I) cata-

lyst systems under a CO atmosphere led to the formation of
rhodacyclopentanone intermediates. The subsequent inser-
tion of the alkene fragment into the intermediates was fol-
lowed by fragmentation to give azocinediones 116 (Scheme
36). The overall process is considered to be equivalent to a
[7+1]-cycloaddition–tautomerization sequence.

5 Ring-Closing Metathesis (RCM)

Another powerful method for the construction of medi-
um-sized nitrogen-containing systems that has received
considerable attention in recent years is ring-closing me-
tathesis.

Li and co-workers reported a five-step sequence for the
construction of dibenzo[b,f]azocinone 119 where the key
step was ruthenium-mediated ring-closing metathesis.48

Starting from methyl 4-amino-3-iodobenzoate (117) the
synthesis involved Stille coupling with tributyl(vinyl)stan-
nane, followed by acylation with 2-vinylbenzoyl chloride,
Boc protection, and RCM. Using Grubbs II catalyst, RCM of
compound 118 resulted in dibenzo[b,f]azocinone 119
(Scheme 37).

Starting from styryldiazoacetate 120, azocine 122 was
obtained by a sequence of two reactions: N–H insertion and
RCM.49 It was also possible to combine the carbenoid N–H
insertion and RCM reactions in a one-pot procedure for the
synthesis of methyl 1,2,5,6,7,8-hexahydroazocine-2-car-
boxylate 122 (Scheme 38).

Scheme 33  Synthesis of azocine derivatives
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Scheme 35  Synthesis of 1,4,7,8-tetrahydroazocin-2(3H)-ones
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Scheme 36  Synthesis of azocinediones via a Rh-catalyzed cycloaddi-
tion–fragmentation process
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Carbamate 124, obtained through condensation of ami-
nobenzaldehyde 123 with methylamine and subsequent in
situ reaction with benzyl chloroformate and then allylzinc
bromide, underwent facile RCM in the presence of Grubbs II
catalyst to give benzo[b]azocine 125 in 81% yield (Scheme
39).38

The ring-closing metathesis approach was utilized to
prepare novel 1,7-annulated azocino[3,2,1-hi]indole deriva-
tives 129 starting from indoles 126 (Scheme 40).50,51

Formylation of indole 126 followed by allylation of the N-
atom and condensation with nitromethane led to 1-allyl-7-
(2-nitrovinyl)indole 127. Reaction of 1-allyl-7-(2-nitrovi-
nyl)indole 127 with allylmagnesium bromide gave 1-allyl-
7-[1-(nitromethyl)but-3-enyl]indole 128 that underwent

ring-closing metathesis to give azocinoindoles 129 in mod-
erate yields.

Based on combined the aza-Claisen rearrangement and
ring-closing metathesis, the Majumdar group obtained pyr-
imido[5,4-b]azocine derivatives 135 in excellent yields
(Scheme 41).52 The starting 5-bromouracil derivatives 130
reacted with allylamine to give 5-allyluracils 131, subse-
quent catalyzed aza-Claisen rearrangement and tosylation
led to tosyl derivatives 133. Reaction of 133 with homoallyl

Scheme 37  Synthesis of a dibenzo[b,f]azocinone
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Scheme 38  Synthesis of methyl 1,2,5,6,7,8-hexahydroazocine-2-car-
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bromide provided the required precursor 134 for RCM us-
ing the Grubbs first-generation catalyst (Grubbs I) to give
135.

Scheme 41  Synthesis of pyrimido[5,4-b]azocine derivatives based on 
combined aza-Claisen rearrangement and RCM

Using the same concept, the Majumdar group prepared
RCM precursors 137 and 140. Starting from aminonaphtha-
lenes 136 and 139, reaction with allylamine, subsequent
aza-Claisen rearrangement, tosylation, and alkylation with
homoallyl bromide gave 137 and 140. Under the RCM con-
ditions, naphthalene derivatives 137 and 140 gave cyclized
products, naphtho[1,2-b]azocines 138 and naphtho[2,1-
b]azocines 141, respectively, in good yields (Scheme 42).53

Lindsley and co-worker developed a novel six-step ap-
proach for the rapid and enantioselective synthesis of pyr-
rolo[1,2-a]azocines 147 and 152.54 Commercially available
aldehyde 142 was converted into (R)-N-sulfinylaldimine
143, followed by indium-mediated allylation yielding 144.
Subsequent alkenylation of 144 with 5-bromopent-1-ene
provides 145 which underwent RCM reaction with Grubbs
II catalyst to deliver 146 in 70% yield for two steps. Hydro-
genation, followed by a one-pot deprotection/acetal hydro-
lysis/reductive amination sequence produced decahydropyr-
rolo[1,2-a]azocine 147 in 87% yield for two steps and with
more than 98% ee (Scheme 43).

Pyrrolo[1,2-a]azocinone 152 was synthesized from
commercial aldehyde 148, which was converted into (S)-N-
sulfinylaldimine 149. Indium-mediated allylation of 149 to
give 150 and subsequent deprotection gave a primary
amine that cyclized to give (S)-5-allylpyrrolidin-2-one 151.

The alkenylation of lactone 151 with 5-bromopent-1-ene,
followed by RCM with Grubbs II catalyst afforded
1,5,6,7,10,10a-hexahydropyrrolo[1,2-a]azocin-3(2H)-one
152 in 73% yields for two steps (Scheme 44).

In 2013, using a modified strategy Lindsley and co-
workers developed a rapid route to access pyrrolo[1,2-a]-,
pyrido[1,2-a]-, and azepino[1,2-a]azocines 153–155
(Scheme 45).55

Benedetti, Penoni, and co-workers obtained benzo[c]azo-
cine derivative 158 in 69% yield from enyne 157, from 156
using a Sonogashira reaction (Scheme 46).56

Hexahydroazocine 161 was formed by microwave-as-
sisted RCM of an α-allyl-α-phenyl-α-amino acid 160 ob-
tained in two steps from α-imino ester 159 (Scheme 47).57
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Scheme 42  Synthesis of naphtho[1,2-b]azocines and naphtho[2,1-
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Dash and co-workers constructed imidazo[1,5-a]azo-
cine 163 from commercially available hydantoin 162 via a
four-step procedure involving selective N-allylation and C5-
alkylation and with the key step being RCM (Scheme 48).58

Moss reported the efficient synthesis of a range of het-
erocycle-fused azocine derivatives 165–167 employing a
directed metalation/ruthenium-catalyzed RCM approach.59

The RCM precursors 164 were synthesized from carboxylic
acids or 2-chloro-4-iodopyridine in three to four steps
(Scheme 49).

Rao and co-workers developed a common strategy for
the construction of polyhydroxy azocine derivatives, in-
cluding a novel example, from D-1,5-gluconolactone 168,
using an RCM protocol as the key step.60 D-1,5-Gluconolac-
tone 168 was converted into compound 169 by a five-step
procedure. Compound 169 was subjected to allylation with
allyl chloride producing N-allyl derivative 170; subsequent
deprotection, oxidative cleavage, and reaction with vinyl-
magnesium bromide gave 171. RCM of compound 171 af-
forded the cyclized products 172 and 173. The final depro-
tection and hydrogenation of azocines 172 and 173 provid-
ed polyhydroxy azocine derivatives 174 and 175 in 72% and
66% yields, respectively (Scheme 50).

Bertozzi and Sletten synthesized a novel strained azacy-
clooctyne 181, which represents a new class of heterocyclic
substrates for Cu-free click chemistry.61 The synthesis in-

Scheme 43  Synthesis of decahydropyrrolo[1,2-a]azocine
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Scheme 44  Synthesis of 1,5,6,7,10,10a-hexahydropyrrolo[1,2-a]azo-
cin-3(2H)-one
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Scheme 45  Synthesis of pyrrolo[1,2-a]-, pyrido[1,2-a]-, and azepi-
no[1,2-a]azocines
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volved nine steps beginning from 6-bromoglucopyranoside
176. First, compound 176 was transformed into acyclic di-
ene 177 via zinc reduction/reductive amination reaction
followed by amide formation with methyl succinyl chloride.
The eight-membered ring was constructed by RCM giving
azocine 178, which was converted into ketone 179 by oxi-
dation and subsequent hydrogenation. The condensation of
179 with semicarbazide and then oxidation with selenium
dioxide led to selenadiazole 180. Subsequent thermal de-
composition followed by saponification of the ester pro-
duced azocine 181 (Scheme 51).

In 2011, Danheiser and co-workers showed that the
combination of ynamide-based benzannulation with RCM
provides an expeditious strategy for the assembly of benzo-
fused nitrogen heterocycles including azocines 187–189.62

The precursors 184–186 for RCM were obtained via
benzannulation from cyclobutenones with ynamide 183,
prepared by reaction of carbamate 182 with 5-bromopent-
1-en-4-yne. RCM occurred in the presence of the Grubbs II
catalyst in dichloromethane (Scheme 52).

The synthetic use of this strategy is illustrated in its ap-
plication in a concise enantioselective route to the benzoazo-
cine core 190 of the antitumor agents (+)-FR900482 and

Scheme 47  Synthesis of hexahydroazocine
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Scheme 48  Synthesis of imidazo[1,5-a]azocine
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(+)-FR66979. The synthesis of the benzoazocine core 191
and the completion of the formal total synthesis of
FR900482 and Fr66979 are shown in Scheme 53.

In 2013, Danheiser and co-workers employed the ‘sec-
ond generation’ of benzannulation/RCM strategy, in which
α-diazo ketones 192 were employed as vinylketene sub-
strates instead of cyclobutenones.63 Using this method hy-
droxy-substituted naphtho[2,3-b]azocine 193 was obtained
in good yield (Scheme 54).

In their investigations to develop concise total syntheses
of some indole alkaloids possessing the azocine ring,
Bennasar and co-workers successfully applied the combina-
tion of RCM and vinyl halide Heck cyclization for the con-
struction of the azocinoindole moiety. The first unsuccess-
ful attempt to work out the total synthesis of (±)-apparicine
led to unexpected tetracycle 198.64 The required RCM sub-
strates 195a,b, prepared from 2-vinylindole-3-carbalde-
hyde 194 by reductive amination followed by N-acylation or
sulfonylation, were subjected to RCM giving azocinoindoles
196,b in acceptable yields. The removal of the Boc group in
azocinoindole 196a, subsequent alkylation with (Z)-2-iodo-
but-2-enyl tosylate and Heck cyclization yielded compound
198 possessing a bridged azocine ring (Scheme 55).

Changing the cyclization site from 5,6-position to 4,5-
position by using as a RCM precursor 2-allyl-3-[(allylami-
no)methyl]indole 199 and introducing an additional isom-
erization step before the Heck cyclization, they succeeded
in accomplishing the first total synthesis of (±)-apparicine
(Scheme 56).64

The combination RCM/Heck cyclization successfully was
utilized for the synthesis of the upper-half of vinorelbine.65

Reductive amination of aldehyde 200 followed by Boc-pro-
tection of the aliphatic nitrogen gave carbamate 201, which
smoothly underwent RCM in the presence of the Grubbs
second-generation catalyst to give azocinoindole 202. The
sequence of N-Boc deprotection, alkylation with allylic bro-
mide, N-indole-deprotection, and Heck cyclization gave the
upper-half of vinorelbine 205 (Scheme 57).

RCM for the building of eight-membered nitrogen-con-
taining cycle has also found application in the completion
of the total synthesis of (–)-nakadomarin A, which shows
interesting cytotoxic and antibacterial activity. A concise
diastereoselective total synthesis was completed in 21 steps
from D-pyroglutamic acid, wherein one of the key steps was
the construction of the azocine ring via RCM (Scheme 58).66

6 Cyclization

6.1 Metal-Catalyzed Cyclization

Chowdhury and co-workers described an elegant meth-
od for the synthesis of benzo[c][1,2,3]triazolo[1,5-a]azo-
cines 208 via palladium/copper-catalyzed heterocycliza-
tion.67 The starting ortho-iodo azides 206 were prepared
from the corresponding alcohols by mesylation and subse-
quent azidation. ortho-Iodo azides 206 underwent palladi-
um/copper-catalyzed azide–alkyne cycloaddition with var-
ious terminal acetylenes 207 followed by arylation of the
triazole to give azocine derivatives 208. Employing 1,3-di-
ethynylbenzene (209) as a reactant, led to bis-heteroannu-
lation giving azocine 210 in moderate yield (Scheme 59). It
is worth noting that the protocol included the formation of
one C–C and two C–N bonds in a one-pot reaction.

Benzo[5,6]azocino[3,4-b]indoles 215 were obtained in
four steps from indole 211 through an intramolecular direct
arylation reaction as the key step.68 Indole 211 was first
treated with amine 212 to give amide 213; N-Boc-protec-
tion or N-methylation gave compounds 214. The cyclization
of 214 mediated by Pd(0) delivered benzo[5,6]azocino[3,4-
b]indoles 215 (Scheme 60).

Pyrroloazocine 219 and azocinoindoles 217 were ob-
tained via a palladium-catalyzed norbornene-mediated
tandem process involving the intramolecular ortho-alkyla-
tion of an aromatic C–H bond followed by intramolecular
direct arylation reaction from compounds 216 and 218, re-
spectively (Scheme 61).69

Scheme 51  Synthesis of a novel strained azacyclooctyne
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Scheme 52  Synthesis of benzo[b]azocines
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Scheme 53  Synthesis of the benzoazocine core of (+)-FR900482 and the completion of the formal total synthesis of the antitumor agents (+)-
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The Van der Eycken group, in 2009, developed a short
and selective approach towards azocino[5,4-b]indoles 221
using a microwave-assisted Hg(OTf)2-catalyzed intramolec-
ular carbocyclization of amides 220 prepared from corre-
sponding tryptamines and 3-substituted prop-2-ynoic
acids (Scheme 62).70

In 2011, the Van der Eycken group elaborated a novel
procedure for the construction of the interesting azoci-
no[cd]indoles 224 via a Pd-catalyzed intramolecular acety-
lene hydroarylation.71 The required for the cyclization, sub-

strates 223 were synthesized by DCC-mediated amidation
of suitable 4-bromotryptamines 222 and various propynoic
acid derivatives. Microwave-assisted Pd-catalyzed cycliza-
tion of indoles 223 proceeded smoothly leading to regio-
and stereoselective azocino[4,5,6-cd]indole derivatives 224
(Scheme 63).

The Van der Eycken group have also reported the syn-
thesis of azocinoindoles via an efficient gold-catalyzed
post-Ugi intramolecular hydroarylation.72,73 Ugi-adducts
225 and 227 underwent 8-endo-dig cyclization leading to
azocino[5,4,3-cd]indoles 226 and azocino[5,4-b]indoles
228, respectively. The merits of this method are good to ex-
cellent yields, a wide range of functional groups introduced
during the Ugi reaction, and selectivity for 8-endo-dig cy-
clization (Scheme 64).

Using a cationic gold-catalyzed intramolecular hydroa-
rylation reaction of β-lactam-tethered allenyl indoles 229,
Alcaide, Almendos, and co-workers obtained tetrahy-
droazeto[1′,2′;1,2]azocino[3,4-b]indoles 230 as single iso-
mers in good yields (Scheme 65).74 The formation of azo-
cines 230 was rationalized through an 8-endo carbocycliza-
tion of the indole group towards the terminal allene carbon.
The gold-catalyzed cyclization allowed the regioselective
formation of fused β-lactams without harming the sensi-
tive four-membered heterocycle.

Pentacyclic azocine derivative 232 was generated in
good yield via a novel gold-catalyzed cascade cyclization
from N-[(2-azidophenyl)ethynyl]benzamides 231 (Scheme
66).75

Scheme 54  Synthesis of naphtho[2,3-b]azocine 193
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Echavarren and co-workers reported the synthesis of
the azocino[5,4-b]indole core skeleton of the lundurines by
gold-catalyzed 8-endo-dig cyclization of an alkynylindole.76

The AuCl3-catalyzed cyclization of 2-[2-(2-ethynyl-5-oxo-
pyrrolidino)ethyl]indole 233, prepared in seven steps from

Scheme 57  Synthesis of the upper-half of vinorelbine
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2-(1H-indol-3-yl)acetate, afforded azocinoindole 234 in
55% isolated yield (Scheme 67); the feasibility of using oth-
er gold complexes was considered.

6.2 Radical Cyclization

The Majumdar group developed a new efficient method
for the synthesis of pyrimidoazocine derivatives 238 via the
first example of an 8-endo-trig thiophenol-mediated radical
cyclization.77 The radical precursors 237 were prepared

from pyrimidines 235, products of the aza-Claisen rear-
rangement of N-allyl-substituted pyrimidines, by tosylation
and the subsequent reaction of intermediates 236 with
propargyl bromide. The alkenyl radicals were generated
from thiophenol initiated by benzoyl peroxide. The pyrimi-
do[5,4-b]azocines 237 were obtained in excellent yields
(Scheme 68).

Scheme 60  Synthesis of benzo[5,6]azocino[3,4-b]indoles; EOM = 
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Scheme 63  Synthesis of azocino[4,5,6-cd]indole derivatives
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On developing the total synthesis of (±)-apparacine,
Bennasar and co-workers prepared azocino[4,3-b]indole
242 via radical cyclization.64 The synthesis of compounds

242 began with the preparation of selenoester 241 as the
radical precursor. Selenoester 241 was prepared by reduc-
tive amination of aldehyde 239, followed by Boc protection
of the resulting secondary amine, and phenylselenenation
of the corresponding carboxylic acid. The treatment of
selenoester 241 with Bu3SnH as the radical mediate and
Et3B as the initiator led to the formation of azocinoindole
242. The reaction of 242 with methyllithium followed by

Scheme 64  Synthesis of azocino[5,4,3-cd]indoles and azocino[5,4-
b]indoles
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Scheme 66  Synthesis of a pentacyclic azocine derivative
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dehydration of the intermediate tertiary alcohol provided
azocinoindole 243 (Scheme 69), which successfully used in
the synthesis of (±)-apparacine (see Scheme 55).

In their investigations, Li and co-workers generated azo-
cine derivatives 245 and 247 starting from diesters 244 and
246 by a sequence of reactions in which the azocine-forma-
tion step was radical cyclization.78 In the case of azocine
245 it was a Mn(III)-mediated oxidative radical process,
whereas the azocine system 247 was obtained by a reduc-
tive radical process (Scheme 70).

Diaba, Bonjoch, and co-worker obtained morphan com-
pounds 249 via the first intramolecular atom transfer radi-
cal process between trichloroacetamide and enol acetate
used as a radical acceptor.79 The reaction was promoted by
Grubbs II catalyst, thus expending the scope of these cata-
lysts beyond the metathesis reaction (Scheme 71).

This reaction enabled the construction of the tricyclic
skeleton of the immunosuppressant FR901483. The re-
quired proradical trichloroacetamide 251 was synthesized
in five steps starting from azaspirodecane 250. The treat-
ment of ketone 251 with isopropenyl acetate gave a regio-
isomeric mixture of enol acetate 252 in a 1.8:1 ratio, the
unseparated mixture was treated with Grubbs II catalyst af-
fording the diazatricyclic derivative 253, its epimer 254,
and unexpected mixture of enones 255. The reaction of
compound 253 with zinc led to dechlorinated derivative
256, possessing the tricyclic skeleton of immunosuppres-
sant FR901483, in 58% yield (Scheme 72).79

Li and co-workers used a route based on the iodine-
atom-transfer radical 8-endo cyclization to synthesize a
number of azocine derivatives.80 Thus, N-acyloxazolidin-

ones 257 underwent 8-endo cyclization promoted by
BF3·OEt2/H2O leading to the formation of oxazoloazocine
258 in high yields with excellent regio- and stereoselectivi-
ty (Scheme 73). It is interesting to note that the product
configuration was changed from 3,8-trans to 3,8-cis.

Li and co-workers also showed that in the presence of
Mg(ClO4)2 and a bis(oxazoline) ligand, N-ethoxycarbonyl-
substituted 2-iodo-N-(pent-4-enyl)alkanamides 259 under-
went 8-endo cyclization giving only 3,5-trans-substituted
azocan-2-ones 260 in excellent yields (Scheme 74).

Similarly, the BF3·OEt2/H2O promote reaction of N-(2-al-
lylaryl)-N-(ethoxycarbonyl)-2-iodoalkanamides 261 afford-
ed benzo[b]azocines 262 with cis-3,5-configuration in high
yields (Scheme 75).

Scheme 69  Synthesis an azocino[4,3-b]indole
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N

CO2Et

CO2Et

Br

K2CO3 
MeCN

reflux
95%

N CO2Et
CO2Et

tBuOH 
toluene
reflux

75%

N

OH

CO2Et Mn(OAc)3, DMSO
22 °C

78% N

CO2Et

O

245

244

N

CO2Et

CO2Et

Br

K2CO3 
MeCN

reflux
94%

N CO2Et

CO2Et

t-BuOH
toluene
reflux

75%

N

OH

CO2Et

N

O

CO2Et

Br

NBS, DMSO
22 °C

95%

Bu3SnH 
AIBN

benzene
 

reflux
50%

N

CO2Et

O

247

246
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6.3 Friedel–Crafts Cyclization

Azocino[3,4-b]indol-1-ones 264 were obtained via acid-
catalyzed intramolecular Friedel–Crafts cyclization of 1-
methyl-N-(4-oxobutyl)indole-2-carboxamides 263 in low
yields (Scheme 76).81

Pandey and co-workers developed a general route for
the synthesis of azocino[5,4-b]indoles 269 starting from al-
lyl bromide 265 which prepared from Morita–Baylis–
Hillman adducts.82 The reaction of tryptamine with allyl
bromide 265 gives 266, protection of the nitrogen atoms in

266 gives 267, and saponification of the ester group in 267
gave indoles 268 which underwent Friedel–Crafts intramo-
lecular cyclization affording azocino[5,4-b]indoles 269 in
good yields (Scheme 77).

Kim and Seo used the Friedel–Crafts reaction as the key
step for the construction of azocine ring in the tetracyclic
compound 274.83 Aminoacrylate 271, prepared from 3,4-di-
methoxyphenethylamine via amidation reaction with 2-io-
dobenzoic acid and subsequent Michael addition of ethyl
propynoate, was subjected to the Heck reaction giving iso-
indole 272. The hydrogenation of isoindole 272 followed by
hydrolysis provide derivative 273 which by the action of
polyphosphoric acid was converted into tetracyclic com-
pound 274 (Scheme 78).

Scheme 72  Synthesis of tricyclic skeleton of immunosuppressant 
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The same sequence of reactions was used in the case of
the synthesis of an azocine alkaloid, magallanesine
(Scheme 79).83

Scheme 79  Synthesis of magallanesine

6.4 Other Examples of Cyclization

In a new synthetic route for the synthesis of the
dasycarpidone skeleton and for the total synthesis of (±)-
uleine, Patir and Uludag used acid-catalyzed intramolecular
cyclization to construct the azocino[4,3-b]indole core.84 Re-
duction of ketoamide 275 with borane–dimethyl sulfide
complex and the subsequent acidification of the resulted al-
cohol 276 with TFA led to 277, which was treated in situ
with DDQ furnishing the desired tetracyclic compounds
278 in good yield. Four further steps were required to com-
plete the total synthesis of (±)-uleine from azocinoindole
278 (Scheme 80).

Azocinoindoles 280 and 283 were obtained by Hamada
and co-workers via a novel acid-promoted skeletal rear-
rangement of 2- or 3-alkylideneindolenium cations gener-
ated from compounds 279 and 282.85,86 A reaction cascade
leading to the azocine system involved intramolecular ipso-
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spirocyclohexadienone unit, and iso-Pictet–Spengler reac-
tion. In addition to the targeted azocinoindoles, pyrrolidine
derivatives 281 and 284 were isolated as the major byprod-
ucts (Scheme 81).

Azocino[4,3-b]indoles 287 were synthesized by the oxi-
dative cyclization of [3-(3-oxopiperidin-2-yl)indol-2-
yl]malonates 286 obtained in four steps from dimethyl or
di-tert-butyl malonates 285.87 Furthermore, these azoci-
no[4,3-b]indoles were successfully used for the total syn-
thesis of (±)- and (–)-actinophyllic acid (Scheme 82).

Reitz and co-workers have prepared benzo[d]azocines
294 and 295 which are formally analogues of Phe-Ala or
Ala-Phe dipeptides joined together on their side chains.88

The synthesis began with the conversion of the N-Boc-pro-
tected 2′-iodo-L-phenylalanine 288 into N-Fmoc derivative
289. Negishi coupling of 289 with either Boc-(β-I)-D-Ala-
OMe or Boc-(β-I)-L-Ala-OMe gave dipeptides 290 and 291,
respectively. Removals of Boc- and benzyl ester groups of
bis-amino acids 290 and 291 and amide formation and cy-
clization with 1-hydroxy-7-azabenzotriazole (HOAt) and O-
(7-azabenzotriazole-1-yl)-N,N,N′,N′-tetramethyluronium hexa-
fluorophosphate (HATU) provided azocines 292 and 293.

Fmoc-deprotection followed by simultaneous amidolysis of
the ester with methylamine and acetylation led to dipep-
tides 294 and 295 (Scheme 83).

Scheme 80  Synthesis of a tetracyclic azocine system with the dasycar-
pidone skeleton
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Scheme 81  Acid-promoted skeletal rearrangement of 2- or 3-alkylidene-
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Hexahydrochromeno[3,4-c]azocine 297 was obtained
from chromene 296 by cyclization which occurred during
Duff formylation, but the yield of the cyclic product was
poor at only 9% (Scheme 84).89

7 Microwave- and Photo-Assisted Reactions

Alcaide, Almendos, and co-workers developed a method
for the synthesis of structurally novel bicyclic azocine-
fused β-lactams 299 and 300 in the absence of any metal
catalyst.90 This was the first example of metal-free prepara-
tion of eight-membered rings by the thermolysis of non-
conjugated azetidin-2-one-tethered bis(allenes) 298 on ap-
plication of microwave irradiation. Azocines 299 and 300
were isolated as single regio- and diastereoisomers
(Scheme 85).

The Van der Eycken group elaborated a new approach
towards the construction of 5,6,7,8-tetrahydrodiben-
zo[c,e]azocines 303 via a microwave-assisted copper-cata-
lyzed intramolecular A3-coupling reaction.91 Formed in situ
by Boc deprotection of biaryl compounds 301, biaryl deriv-
atives 302 with both amino and aldehyde groups reacted
with the suitable alkynes in the presence of CuBr under fo-
cused microwave irradiation thus forming dibenzo[c,e]azo-
cines 303 in good to excellent yields (Scheme 86).

Yudin and Cheung found that N-vinyl-β-lactams 304
underwent microwave-assisted ring-expansion, resulting
from [3,3]-sigmatropic rearrangement between two strate-
gically placed alkene moieties on the β-lactam, giving azo-
cines 305 in yields of 8–86% (Scheme 87).92,93

On irradiation of 4-diazo-4H-imidazole 306 in hexafluo-
robenzene gave the unusual imidazo[3,4-a]azocine 307 in
51% yield (Scheme 88).94

Kutateladze and co-workers synthesized epoxybenzoazo-
cines 309 and 311 from aniline derivatives 308 and 310, re-
spectively, by photo-generation of azaxylylenes and their
subsequent intramolecular [4+4] cycloaddition with a fu-

Scheme 83  Synthesis of benzo[d]azocines; NEM = N-ethylmorpholine
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Scheme 84  Synthesis of hexahydrochromeno[3,4-c]azocine; HMTA = 
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ran-containing pendant tethered either via the aniline ni-
trogen or through the carbonyl-group-containing fragment
(Scheme 89).95

8 Other Methods

8.1 Cascade and Tandem Reactions

Nakamura and co-workers elaborated an efficient syn-
thesis of azocine derivatives 313 from O-propargylic oximes
312 in good to excellent yields by the means of a Rh-cata-

lyzed 2,3-rearrangement/heterocyclization cascade se-
quence.96 It is noteworthy that the chirality of the substrate
was maintained throughout the cascade process to afford
optically active azocines 313d (Scheme 90).

Scheme 90  Synthesis of azocine derivatives

Scheme 86  Synthesis of 5,6,7,8-tetrahydrodibenzo[c,e]azocines
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Scheme 87  [3,3]-Sigmatropic rearrangement of N-vinyl-β-lactams
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Scheme 88  Synthesis of imidazo[3,4-a]azocine
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Scheme 89  Synthesis of epoxybenzoazocines
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She, Xie, and co-workers accomplished a gold-catalyzed
1,2-acyloxy migration/intramolecular [3+2]-cycloaddition
cascade reaction for the construction of unsaturated azo-
cines 315 starting from enynyl esters 314 (Scheme 91).97

Scheme 91  A gold-catalyzed 1,2-acyloxy migration/intramolecular 
[3+2]-cycloaddition cascade reaction

In 2016, She, Xie, and co-workers subsequently expand-
ed this gold-catalyzed 1,2-acyloxy migration/intramolecu-
lar [3+2]-cycloaddition cascade reaction to the synthesis of
benzo[d]azocines 317 from 1,9-enynyl esters 316. The reac-
tion proceeded under mild conditions leading to benzoazo-
cines 317 in good to excellent yields of 55–82% (Scheme
92).98

Scheme 92  Synthesis of benzo[d]azocines 317

Kumar and co-workers synthesized benzo[b]azocines
318 through an unprecedented one-pot, triflic acid mediat-
ed, tandem Michael addition–Fries rearrangement of sorbyl-
anilides 319.99 The reaction is proposed to proceed via a δ-
lactam intermediate, earlier considered unreactive for the
Fries rearrangement (Scheme 93).

In their research concerning the total synthesis of (±)-
actinophyllic acid, Martin and co-workers constructed the
tetracyclic core of the natural compound in a single chemi-
cal operation via a novel Lewis acid catalyzed cascade of re-
actions involving stabilized carbocations and π-nucleop-
hiles.100 The treatment of a mixture of electrophile precur-
sor indole 320 and π-nucleophiles 321 with TMSOTf in the
presence of 2,6-di-tert-butylpyridine, followed by addition

of NaOMe in MeOH at –78 °C gave tetracyclic systems 322
in 53–80% yields (Scheme 94).

8.2 Aldol Condensation

In their work on the total syntheses of (–)-FR901483
and (+)-8-epi-FR901483, Huang and co-workers successful-
ly used the aldol condensation for the construction of the
azocine ring.101,102 Starting from the known chiron (R)-1-al-
lyl-3-benzyloxypiperidine-2,5-dione, piperidin-3-ol 324
was obtained in four steps. The oxidation of 323 gave a ke-
tone that underwent an intramolecular aldol ring-closure
reaction forming azocine derivative 324 (Scheme 95).

Uludag and co-workers ring-closed 1-oxo-1,2,3,4-tetra-
hydrocarbazole 325 by a NaH-promoted intramolecular al-
dol condensation to give the azocino[4,3-b]indole system
326 (Scheme 96).103

8.3 Thermolysis

Thermolysis of hydrazine 327 in m-xylene under reflux
led to the impressive cyclopropa[3,4]azocino[1,2-a]benz-
imidazole 328 in a poor yield of 11% with the two other
products 329 and 330 in higher yields of 22% and 33%
(Scheme 97).104
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Scheme 93  Synthesis of benzo[b]azocines via tandem Michael addi-
tion–Fries rearrangement

R

H
N

O

Me TfOH

DCE, rt

N

O

Me

R

HN

R

Me

O
318

319 (52–90%)

a R = 4-Me; b R = H; 
c R = 4-Cl; d R = 4-OMe, etc.
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Thermolysis of the 12-membered ring aza-enediyne
331 in benzene in the presence of catalytic amounts of p-
toluenesulfonic acid produced the addition-dehydration

product, naphtho[2,3-b]azocine 332 in 18% yield, however,
the major product of this reaction was N-tosyl lactam 333
in 28% yield (Scheme 98).105

8.4 Ring Opening

Tetracyclic azocine derivative 336 possessing a paullone-
like structural framework was obtained in a single step
from a novel 2,2′-spirobi[indolin]-3-one 335 prepared by
Cu-mediated intramolecular cascade reaction of cyclopen-
ta[b]indole 334.106 Compound 335 when treated with
methanolic KOH underwent demesylation followed by ring
opening and subsequent aromatization to give 336 in 90%
yield (Scheme 99).

Scheme 99  Synthesis of a tetracyclic azocine derivative

Yavari and Seyfi found that furo[2′,3′:2,3]cyclopen-
ta[1,2-b]pyrroles 338, obtained by Wittig reaction from oxo-
indeno[1,2-b]pyrroles 337 and DMAD, underwent Et3N-
mediated ring opening thus affording tetrahydroben-
zo[c]furo[3,2-e]azocines 339 in good yields (Scheme
100).107

Scheme 95  Synthesis of bridged azocine derivatives
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Scheme 96  Synthesis of a bridged azocino[4,3-b]indole
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Scheme 97  Synthesis of cyclopropa[3,4]azocino[1,2-a]benzimidazole
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Scheme 100  Synthesis of tetrahydrobenzo[c]furo[3,2-e]azocines

8.5 Other Methods

Waghmode and co-workers synthesized epoxy-bridged
benzo[d]azocines 342 in good to excellent yields from 1-
(bromomethyl)-3-(tosyloxy)chromane 340 via nucleophilic
substitution with various benzylamine derivatives 341
(Scheme 101).108

Scheme 101  Synthesis of epoxy-bridged benzoazocines via nucleo-
philic substitution

Jia and co-workers elaborated a highly enantioselective
palladium/L-proline-catalyzed α-arylative desymmetriza-
tion of cyclohexanones 343 leading to a series of optically
active morphan derivatives 344 with α-carbonyl tertiary
stereocenters in good yields (Scheme 102).109

Scheme 102  Synthesis of a series of optically active morphan deriva-
tives

Xu, Li, and co-workers have designed and synthesized
novel neonicotinoid analogues 346–348 with an aza-
bridged azocine fragment.110 Azocine derivatives 346–348
were prepared by reaction of imidazole 345 with glutaral-
dehyde and a primary amine hydrochloride (aliphatic
amines, phenylhydrazines, and anilines) (Scheme 103).

Azocine derivative 350 was obtained in 16% yield via
cationic aza-Cope rearrangement of aminoketal 349
(Scheme 104).111

Yao, Wu, and co-workers developed a novel facile and
efficient route for the synthesis of benzo[b]naphtha[2,3-
d]azocinones 353 through a palladium-catalyzed reaction
of 2-alkynylanilines 351 with 2-(2-bromobenzylidene)cy-
clobutanones 352.112 During the reaction process, double
carbometalation resulting in the formation of three new
bonds was involved (Scheme 105).

Boeckman and co-workers obtained azocine derivatives
355 and 357 using a one-pot, aza-Wittig/retro-aza-Claisen
sequence from 2-vinylcyclobutanecarbaldehydes 354 and
356, respectively.113 The rearrangement sequence proceed-
ed under mild conditions affording azocines 355 and 357 in
75–92% yields (Scheme 106).

Modification of a previously reported procedure114 al-
lowed Raffa and co-workers obtain the polycyclic system,
5,7:7,12-dimethanopyrazolo[3,4-b]pyrazolo[3′,4′:2,3]aze-
pino[4,5-f]azocine 360.115 Methylaminopyrazoles 358 and
hexane-2,5-dione (359) reacted in refluxing 1,4-dioxane in
the presence of p-toluenesulfonic acid thus leading to com-
pounds 360 in 10–37% yields (Scheme 107).

Systematically investigating the reactivity of the pallad-
acycles obtained in their studies, Vicente, Saura-Llamas,
and co-workers synthesized various azocine-containing
systems. Thus, heating of complex 361 in the presence of
TlOTf and 2,4-dimethylphenyl isocyanide gave azocine 363
through insertion of isocyanide and C–N coupling process
(Scheme 108).116

The treatment of eight-membered palladacycles 364
and palladacycles 366 with CO afforded benzo[d]azocine-
2,4-(1H,3H)-diones 365117 or hexahydrobenzo[d]azocin-
ones 367,118 which resulted from the insertion of a mole-
cule of CO into the Pd–C bond and subsequent C–N reduc-
tive coupling (Scheme 109).

These methods were extended to the preparation of
dibenzo[c,e]azocines 369/370 and 371 via insertion of CO
and isocyanide, respectively (Scheme 110).119

9 Conclusion

In recent years, many new pathways towards eight-
membered azaheterocycles have been elaborated including
domino approaches, MCRs, metal-catalyzed cyclizations,
RCM, and ring-expansion strategies. These approaches pro-
vide environmentally friendly and step-economical access
towards several annulated azocines with substantial biolog-
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ical activity and natural compounds. However, much work
remains to be done to elaborate general synthetic strategy
towards medium-sized nitrogen heterocycles including
azocines.

Scheme 103  Synthesis of novel neonicotinoid analogues
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