Z.-A. HUANG, C. CHEN, X.-D. YANG,* X.-B. FAN, W. ZHOU, C.-H. TUNG, L.-Z. WU, H. CONG* (FUDAN UNIVERSITY, SHANGHAI, TECHNICAL INSTITUTE OF PHYSICS AND CHEMISTRY & UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, BEIJING, AND PEKING UNIVERSITY, BEIJING, P. R. OF CHINA)

Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization-Cycloreversion Strategy

J. Am. Chem. Soc. 2016, 138, 11144-11147.

Nanohoop through Anthracene Photodimerization-Cycloreversion

Significance: Nanohoops composed of highly strained aromatic hydrocarbons are fascinating carbon-rich structures, and creative strategies are required for their efficient syntheses. The authors utilize an anthracene photodimerization—cycloreversion strategy to make a novel nanohoop with interesting photophysical properties.

Comment: The rigid dianthracene scaffold approach generates the target nanohoop in excellent yields over six steps. The often critical ring-closing step was achieved in a particularly efficient manner under nickel-mediated Yamamoto coupling conditions.

SYNFACTS Contributors: Timothy M. Swager, Constantin-Christian A. Voll Synfacts 2016, 12(11), 1141 Published online: 18.10.2016

DOI: 10.1055/s-0036-1589379; Reg-No.: S10116SF

Category

Synthesis of Materials and Unnatural Products

Key words

nanohoop
oligoparaphenylene
photodimerization
cycloreversion

1141