B. ZHANG, W. ZHENG, X. WANG, D. SUN,* C. LI* (SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY AND NINGBO UNIVERSITY OF TECHNOLOGY, P. R. OF CHINA)

Total Synthesis of Notoamides F, I, and R and Sclerotiamide

Angew. Chem. Int. Ed. 2016, 55, 10435-10438.

Synthesis of (+)-Notoamides F, I, and R and (-)-Sclerotiamide

Significance: Herein, the authors describe the first total synthesis of (+)-notoamides F, I, and R, and (-)-sclerotiamide, isolated from the marine fungi *Aspergillus* sp. The synthetic strategy relies on a cobalt-mediated radical cycloisomerization and an aza-Prins cyclization to construct the bicyclo[2.2.2]diazaoctane core.

SYNFACTS Contributors: Erick M. Carreira, Marco Brandstätter Synfacts 2016, 12(10), 0999 Published online: 19.09.2016 **DOI:** 10.1055/s-0036-1589184; **Reg-No.:** C05016SF

Comment: Treatment of diamide \mathbf{D} with FeCl $_3$ induces an oxidative aza-Prins cyclization to give ester \mathbf{F} in 67% yield. After Grignard addition of indole \mathbf{G} , cobalt-mediated radical cyclization delivers \mathbf{K} , which can be further transformed into (+)-notoamide I in three steps. From there, the other three natural products can be accessed.

Category

Synthesis of Natural Products and Potential Drugs

Key words

- (+)-notoamide F
- (+)-notoamide I
- (+)-notoamide R
- (-)-sclerotiamide
- aza-Prins reaction
- cobalt
- radical cyclization

