Synlett 2017; 28(17): 2205-2211
DOI: 10.1055/s-0036-1589081
synpacts
© Georg Thieme Verlag Stuttgart · New York

Highly Strained para-Phenylene-Bridged Macrocycles from Unstrained 1,4-Diketo Macrocycles

Nirmal K. Mitra
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA   Email: blm0022@auburn.edu
,
Caroline P. Merryman
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA   Email: blm0022@auburn.edu
,
Bradley L. Merner*
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA   Email: blm0022@auburn.edu
› Author Affiliations
Further Information

Publication History

Received: 31 May 2017

Accepted after revision: 23 June 2017

Publication Date:
22 August 2017 (online)


Abstract

The conversion of macrocyclic 1,4-diketones to highly strained para-phenylene rings has recently been reported by our laboratory. This synthetic strategy represents a non-cross-coupling-based approach to arene-bridged macrocycles, and an alternative to palladium- and nickel-mediated processes. In this Synpacts article we discuss the development of endgame aromatization protocols for the synthesis of increasingly strained arene systems, as well as potential advantages of the macrocyclic 1,4-diketone approach to selectively functionalized benzenoid macrocycles for future complexity building reactions.

1 Introduction

2 A Non-Cross-Coupling-Based Approach to Arene-Bridged Macro cycles

3 Macrocyclic 1,4-Diketones: Streamlined Synthesis and Size-­Dependent Diastereoselective Grignard Reactions

4 Dehydrative Aromatization Reactions: A Powerful Tool for Synthesizing Highly Strained para-Phenylene Units

5 Conclusion

 
  • References

  • 1 Gulder T. Baran PS. Nat. Prod. Rep. 2012; 29: 899

    • For approaches to the tetrahydropyridine core of haouamine A, see:
    • 2a Smith ND. Hayashida J. Rawal VH. Org. Lett. 2005; 7: 4309
    • 2b Jeong JH. Weinreb SM. Org. Lett. 2006; 8: 2309
    • 2c Fürstner A. Ackerstaff J. Chem. Commun. 2008; 2870
    • 2d Taniguchi T. Zaimoku H. Ishibashi H. J. Org. Chem. 2009; 74: 2624
    • 2e Fenster E. Fehl C. Aubé J. Org. Lett. 2011; 13: 2614
  • 3 Baran PS. Burns NZ. J. Am. Chem. Soc. 2006; 128: 3908
  • 4 Burns NZ. Krylova IN. Hannoush RN. Baran PS. J. Am. Chem. Soc. 2009; 131: 9172
  • 5 Mukaiyama T. Matsuo J. Kitagawa H. Chem. Lett. 2000; 29: 1250
  • 6 Matveenko M. Liang G. Lauterwasser EM. W. Zubía E. Trauner D. J. Am. Chem. Soc. 2012; 134: 9291
  • 7 Momoi Y. Okuyama K. Toya H. Sugimoto K. Okano K. Tokuyama H. Angew. Chem. Int. Ed. 2014; 53: 13215
  • 8 Wipf P. Furegati M. Org. Lett. 2006; 8: 1901
  • 9 Jasti R. Bhattacharjee J. Neaton JB. Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646

    • For calculated strain energies (SEs) of [n]CPPs, see:
    • 10a Iwamoto T. Watanabe Y. Sakamoto Y. Suzuki T. Yamago S. J. Am. Chem. Soc. 2011; 133: 8354
    • 10b Segawa Y. Omachi H. Itami K. Org. Lett. 2010; 12: 2262
  • 11 For a detailed review on this subject, see: Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
    • 12a Golder MR. Jasti R. Acc. Chem. Res. 2015; 48: 557
    • 12b Huang C. Huang Y. Akhmedov NG. Popp BV. Petersen JL. Wang KK. Org. Lett. 2014; 16: 2672
    • 13a Omachi H. Segawa Y. Itami K. Acc. Chem. Res. 2012; 45: 1378
    • 13b Tran-Van A.-F. Huxol E. Basler JM. Neuburger M. Adjizian J.-J. Ewels CP. Wegner HA. Org. Lett. 2014; 16: 1594
  • 14 Yamago S. Watanbe Y. Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
  • 15 Xia J. Jasti R. Angew. Chem. Int. Ed. 2012; 51: 2474
    • 16a Kayahara E. Patel VK. Yamago S. J. Am. Chem. Soc. 2014; 136: 2284
    • 16b Evans PJ. Darzi ER. Jasti R. Nat. Chem. 2014; 6: 404
    • 16c Darzi ER. White BM. Loventhal LK. Zakharov LN. Jasti R. J. Am. Chem. Soc. 2017; 139: 3106
  • 17 Myśliwiec D. Kondratowicz M. Lis T. Chmielewski PJ. Stępień M. J. Am. Chem. Soc. 2015; 137: 1643
  • 18 Ghasemabadi PG. Yao T. Bodwell GJ. Chem. Soc. Rev. 2015; 44: 6494
    • 19a Golling FE. Osella S. Quernheim M. Wagner M. Beljonne D. Müllen K. Chem. Sci. 2015; 6: 7072
    • 19b Yagi A. Venkataramana G. Segawa Y. Itami K. Chem. Commun. 2014; 50: 957
    • 19c Iwamoto T. Kayahara E. Yasuda N. Suzuki T. Yamago S. Angew. Chem. Int. Ed. 2014; 53: 6430
    • 19d Yagi A. Segawa Y. Itami K. J. Am. Chem. Soc. 2012; 134: 2962
    • 19e Nishiuchi T. Feng X. Enkelmann V. Wagner M. Müllen K. Chem. Eur. J. 2012; 18: 16621
    • 19f Hitosugi S. Nakanishi W. Yamaski T. Isobe H. Nat. Commun. 2011; 2: 492
    • 20a Sisto TJ. Zakharov LN. White BM. Jasti R. Chem. Sci. 2016; 7: 3681
    • 20b Sisto TJ. Tian X. Jasti R. J. Org. Chem. 2012; 77: 5857
    • 20c Quernheim M. Golling FE. Zhang W. Wagner M. Räder H.-J. Nishiuchi T. Müllen K. Angew. Chem. Int. Ed. 2015; 54: 10341
  • 21 Mitra NK. Meudom R. Gorden JD. Merner BL. Org. Lett. 2015; 17: 2700
  • 22 Connolly T. Wang Z. Walker MA. McDonald IM. Peese KM. Org. Lett. 2014; 16: 4444
  • 23 Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
  • 24 Mitra NK. Meudom R. Corzo HH. Gorden JD. Merner BL. J. Am. Chem. Soc. 2016; 138: 3235
  • 25 Atkins GM. Jr. Burgess EM. J. Am. Chem. Soc. 1968; 90: 4744
  • 26 Mitra NK. Corzo HH. Merner BL. Org. Lett. 2016; 18: 3278
  • 27 Kammermeier S. Jones PG. Herges R. Angew. Chem., Int. Ed. Engl. 1996; 35: 2669