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Abstract Seven-membered nitrogen-containing heterocycles are con-
siderably underrepresented in the literature compared to their five- and
six-membered analogues. Herein, we report a relatively understudied
photochemical rearrangement of N-vinylpyrrolidinones to azepin-4-
ones in good yields. This transformation allows for the conversion of
readily available pyrrolidinones and aldehydes to densely functionalized
azepane derivatives in a facile two-step procedure.

Key words azepane, photochemistry, photo-Fries rearrangement,
heterocycles, [5+2] cycloaddition

Seven-membered nitrogen-containing rings present an
intriguing challenge compared to their five- and six-mem-
bered analogues. Although they occur with less frequency
than these other ‘common’ rings, their appearance in mole-
cules of biological interest provides significant motivation
to construct these frameworks efficiently and effectively.1
Additionally, five- and six-membered heterocycles have
been heavily explored, while substantially less work has
been done on the construction of seven-membered (and
larger) nitrogen-containing rings (Figure 1).2

This is particularly evident when considering the inci-
dence of seven- and eight-membered rings in pharmaceuti-
cals approved by the FDA3 compared to their coverage in the
patent literature (Figure 1).4

While cyclization strategies dominate azepane and azo-
cane synthesis, we felt that two component-coupling ap-
proaches were fundamentally more powerful and consid-
ered various disconnections. A [5+2] approach proved allur-
ing since the two-atom unit may be an alkene or surrogate,
trivially accessed and abundant, while the five-atom unit is
pyrrolidinone. Such a union could be realized by condensa-

Figure 1  a. Prevalence of saturated nitrogen-containing heterocycles 
in FDA-approved pharmaceuticals (%)3 and in patents detailing their 
construction;4 b. A conceptualized approach at a formal [5+2] union to 
form azepanes.
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tion of pyrrolidinone with aldehydes followed by a photo-
chemical Fries-like rearrangement to form the azepinone.
This reaction was first described in the patent literature
(Scheme 1);5 subsequent studies by Booker-Milburn6,
Mazzocchi7, and others8 have shown similar photochemical
[5+2]-ring-expansion chemistry with the maleimide and
phthalimide frameworks, respectively. Stimulated by the
conviction that this photo-Fries-like chemistry9 could be a
powerful reaction for the synthesis of azepanes, we sought
to develop the method.

The N-vinylpyrrolidinones are readily accessible
through the condensation of a desired aldehyde and pyrro-
lidinone (Scheme 2). Unlike the chemistry of the maleimid-
es, this method allows for the facile and diverse structural
modification and functionalization around the azepane
motif. Additionally, the resultant vinylogous amide moiety
formed during the reaction is an exemplary functional
group for further manipulation.10

Scheme 2  Formation of N-vinylpyrrolidinones

Our investigation into the photochemical11 [5+2] cyclo-
addition began with optimization of the reaction condi-
tions on 3a, using the conditions reported in the patent lit-
erature5 as a starting point (Table 1, entry 1). The use of THF
as solvent increases the yield of the reaction to 48% over 24
hours (Table 1, entry 8). Dilution of the reaction to 0.02 M
further increases the yield, presumably due to disfavored
competitive polymerization12 and dimerization13 pathways.

Table 1  Optimization Conditions

The photochemical rearrangement tolerates a broad
range of substitution on the enamine (Scheme 3) including
simple alkyl groups (4c–e) as well as aryl (4f), and electron-
rich and electron-poor benzyl substituents (4m–o). Di-
enamine-substituted pyrrolidinone 3l participates in the
reaction, although in diminished yield. A stereocenter pres-
ent on the alkene substituent remains intact over the
course of the reaction (4j). Unfortunately, efforts to create
quaternary centers α to the ketone as well as substrates
which included carbonyl moieties other than the reactive
amide showed no conversion under the irradiative condi-
tions.14

Scheme 3  Scope of alkene substituent

Functionalization at any of the positions on the pyrro-
lidinone ring is also possible (Scheme 4). Interestingly, het-
eroatoms are often tolerated, even in the case of unprotect-
ed alcohols. Pre-existing stereocenters on the pyrrolidinone
ring do not racemize in the rearrangement chemistry with
the exception of stereocenters α to the amide. It is pre-
sumed that this is due to the Norrish Type I cleavage of the
C–C bond that does not lead to any productive pathways
and recombines, scrambling the stereocenter.

Entry Solvent Concentration (M) Time (h) Yield (%)

1 MeOH 0.2 24 40

2 MeCN 0.2 24 22

3 THF 0.2 24 48

4 THF 0.2 48 75

5 THF 0.5 48 67

6 THF 1.0 48 55

7 THF 0.1 48 81

8 THF 0.02 48 92
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Scheme 4  Scope of pyrrolidinone substituent

The transformation also allows us to access larger rings
(6h). A further increase in ring size leads to difficulty in pu-
rification due to competitive polymerization, despite dilut-
ing the samples to 0.001 M.

Scheme 5 Potential reaction mechanism15

A potential mechanism for this reactivity, as argued by
Shizuka and coworkers15, involves the Norrish-type I (α)
homolytic cleavage of the amide bond after irradiation with
254 nm light (Scheme 5). The resultant biradical III can

then either recombine to reform the starting material or
combine with the carbon β to the nitrogen to generate
imine V. Tautomerization of V gives the observed product.
Investigation of a similar maleimide system by Booker-
Milburn and coworkers6c suggests that the reactive biradi-
cal intermediate proceeds through an excited singlet state
as opposed to an excited triplet state. When directly irradi-
ated, they solely observed the [5+2] cycloaddition product
whereas when they irradiated the maleimide in the pres-
ence of the triplet sensitizer benzophenone, they solely ob-
served the [2+2] cycloaddition between the alkene and ma-
leimide backbone.16 In our system, addition of oxygen or
catalytic benzophenone as triplet quenchers did not inter-
fere with the outcome of the reaction, supporting the likeli-
hood of a singlet pathway.

Scheme 6  Derivatization reactions

The cyclic vinylogous amide moiety formed in this
transformation is easily manipulated to a variety of useful
functional handles (Scheme 6). Georg10 and others17 have
extensively studied the modification of the six-membered
vinylogous amide analogues; however, the comparable re-
activity with seven-membered azepin-4-ones is relatively
rare.18 We found that these scaffolds easily convert into oth-
er useful seven-membered heterocycles. Global reduction
of the vinylogous amide, as well as semireduction by hydro-
genation to the ketone each proceed uneventfully; a Wolff–
Kishner protocol results in deoxygenation with alkene mi-
gration to deliver 11.

In conclusion, we have developed a formal two-step
[5+2] cycloaddition to form azepinones exploiting a rela-
tively understudied photochemical rearrangement.19,20 This
facile approach allows for the construction of synthetically
useful functionalized azepin-4-ones in good yields from
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readily available aldehydes and pyrrolidinones. Modifica-
tion of these substrates allows for the access to a diverse set
of substituted azepane derivatives.
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