Synlett 2017; 28(13): 1608-1613
DOI: 10.1055/s-0036-1589028
letter
© Georg Thieme Verlag Stuttgart · New York

A Novel Glycosyl Donor with a Triisopropylsilyl Nonparticipating Group in Benzyl-Free Stereoselective 1,2-cis-Galactosylation

Polina I. Abronina*
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
,
Alexander I. Zinin
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
,
Nelly N. Malysheva
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
,
Elena V. Stepanova
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
b   Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation
,
Alexander O. Chizhov
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
,
Vladimir I. Torgov
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
,
a   N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation   Email: polina-abronina@yandex.ru   Email: leonid.kononov@gmail.com
› Author Affiliations
Supported by: Russian Foundation for Basic Research 16-03-00755
Further Information

Publication History

Received: 03 March 2017

Accepted after revision: 09 April 2017

Publication Date:
08 May 2017 (online)


Abstract

A novel glycosyl donor with a triisopropylsilyl (TIPS) nonparticipating group at O-2 is introduced for use in 1,2-cis-galactosylation. Coupling the 2-O-TIPS-substituted thiogalactoside donor with a series of mono- and disaccharide glycosyl acceptors was found to lead exclusively to α-linked oligosaccharides. The observed exceptionally high α-selectivity was interpreted in terms of conformational changes in the glycosyl cation induced by the bulky 2-O-TIPS group.

Supporting Information

 
  • References and Notes

  • 1 Groux-Degroote S. Guérardel Y. Delannoy P. In Carbohydrate Chemistry: State of the Art and Challenges for Drug Development . Cipolla L. Imperial College Press; London: 2016: 60
  • 2 Shiozaki M. Tashiro T. Koshino H. Nakagawa R. Inoue S. Shigeura T. Watarai H. Taniguchi M. Mori K. Carbohydr. Res. 2010; 345: 1663
  • 3 Morita M. Motoki K. Akimoto K. Natori T. Sakai T. Sawa E. Yamaji K. Koezuka Y. Kobayashi E. Fukushima H. J. Med. Chem. 1995; 38: 2176
  • 4 Bendelac A. Savage PB. Teyton L. Annu. Rev. Immunol. 2007; 25: 297
  • 5 Kihlberg J. Hultgren SJ. Normark SO. Magnusson G. J. Am. Chem. Soc. 1989; 111: 6364
  • 6 Ashmus RA. Schocker NS. Cordero-Mendoza Y. Marques AF. Monroy EY. Pardo A. Izquierdo L. Gállego M. Gascon J. Almeida IC. Michael K. Org. Biomol. Chem. 2013; 11: 5579
  • 7 Bohé L. Crich D. Carbohydr. Res. 2015; 403: 48
  • 8 Nigudkar SS. Demchenko AV. Chem. Sci. 2015; 6: 2687
  • 9 Mensink RA. Elferink H. White PB. Pers N. Rutjes FP. J. T. Boltje T. J. Eur. J. Org. Chem. 2016; 4656
  • 10 Baek JY. Kwon H.-W. Myung SJ. Park JJ. Kim MY. Rathwell DC. K. Jeon HB. Seeberger PH. Kim KS. Tetrahedron 2015; 71: 5315
  • 11 Komarova BS. Ustyuzhanina NE. Tsvetkov YE. Nifantiev NE. In Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates . Werz DB. Vidal S. Wiley-VCH; Weinheim: 2014: 125
  • 12 Demchenko AV. Rousson E. Boons G.-J. Tetrahedron Lett. 1999; 40: 6523
  • 13 Cheng YP. Chen H.-T. Lin C.-C. Tetrahedron Lett. 2002; 43: 7721
  • 14 Lourenço EC. Ventura MR. Tetrahedron 2013; 69: 7090
  • 15 Imamura A. Ando H. Ishida H. Kiso M. Curr. Org. Chem. 2008; 12: 675
  • 16 Imamura A. Matsuzawa N. Sakai S. Udagawa T. Nakashima S. Ando H. Ishida H. Kiso M. J. Org. Chem. 2016; 81: 9086
  • 17 Veerapen N. Brigl M. Garg S. Cerundolo V. Cox LR. Brenner MB. Besra GS. Bioorg. Med. Chem. Lett. 2009; 19: 4288
  • 18 Khaja SD. Kumar V. Ahmad M. Xue J. Matta KL. Tetrahedron Lett. 2010; 51: 4411
  • 19 Xia C. Zhang W. Zhang Y. Woodward RL. Wang J. Wang PG. Tetrahedron 2009; 65: 6390
    • 20a Fedina KG. Abronina PI. Podvalnyy NM. Kondakov NN. Chizhov AO. Torgov VI. Kononov LO. Carbohydr. Res. 2012; 357: 62
    • 20b Abronina PI. Fedina KG. Podvalnyy NM. Kondakov NN. Chizhov AO. Torgov VI. Kononov LO. Carbohydr. Res. 2014; 396: 25
    • 20c Podvalnyy NM. Abronina PI. Fedina KG. Kondakov NN. Zinin AI. Chizhov AO. Torgov VI. Kachala VV. Kononov LO. Russ. Chem. Bull. 2015; 64: 1149
    • 20d Podvalnyy NM. Chizhov AO. Zinin AI. Kononov LO. Carbohydr. Res. 2016; 431: 25
  • 21 Abronina PI. Zinin AI. Romashin DA. Malysheva NN. Chizhov AO. Kononov LO. Synlett 2015; 26: 2267
  • 22 Wacowich-Sgarbi SA. Bundle DR. J. Org. Chem. 1999; 64: 9080
  • 23 Kramer S. Nolting B. Ott A.-J. Vogel C. J. Carbohydr. Chem. 2000; 7: 891
  • 24 Kononov LO. Volodin DA. Magnusson G. Russ. Chem. Bull. 2003; 52: 1434
    • 25a Barili PL. Berti G. Catelani G. Colonna F. Marra A. Tetrahedron Lett. 1986; 27: 2307
    • 25b Catelani G. Colonna F. Marra A. Carbohydr. Res. 1988; 182: 297
  • 26 Abe H. Shuto S. Tamura S. Matsuda A. Tetrahedron Lett. 2001; 42: 6159
  • 27 Dong H. Pei Z. Byström S. Ramström O. J. Org. Chem. 2007; 72: 1499
  • 28 Jackson TA. Robertson V. Imberty A. Auzanneau F.-I. Bioorg. Med. Chem. 2009; 17: 1514
  • 29 Jiang J. Biggins JB. Thorson JS. J. Am. Chem. Soc. 2000; 122: 6803
  • 30 Ziegler T. Kováč P. Glaudemans CP. J. Carbohydr. Res. 1989; 194: 185
  • 31 General Procedure for Glycosylation
    Method A: Preparation of Oligosaccharides 13, 16, 17, 27
    A mixture of thioglycoside 7 (40 mg, 58 μmol) and glycosyl acceptor 9, 12, or 24 (45 μmol) was dried in vacuo for 2 h, then anhydrous CH2Cl2 (2 mL) was added under argon. Freshly activated (220 °C, 6 h, in vacuo) powdered 4 Å MS (200 mg) were added under argon to the resulting solution, and the reaction flask was flushed with argon. The suspension was stirred under argon at ca. 22 °C for 1 h, then cooled to –40 °C (acetone/dry ice bath). Solid NIS (12 mg, 58 μmol) was added, followed by TfOH (2 μL, 12 μmol). Then the temperature was allowed to rise slowly to –20 °C. The mixture was kept at this temperature for 12 h, and then the reaction mixture was worked up. Method B: Preparation of oligosaccharides 14, 15, 28 A mixture of a thioglycoside 7 (40 mg, 58 μmol) and glycosyl acceptor 10, 11, or 26 (45 μmol) was dried in vacuo for 2 h, then anhydrous CH2Cl2 (2 mL) was added under argon. Freshly activated (220 °C, 6 h, in vacuo) powdered 4 Å MS (200 mg) were added under argon to the resulting solution, and the reaction flask was flushed with argon. The suspension was stirred under argon at ca. 22 °C for 1 h, then cooled to –40 °C (acetone/dry ice bath). Solid NIS (12 mg, 58 μmol) was added, followed by AgOTf (3 mg, 12 μmol). Then the temperature was allowed to rise slowly until appearance of a persistent characteristic iodine color at –25 °C. This temperature was maintained for 60 min, and then the reaction mixture was worked up. Workup The reaction was quenched by the addition of sat. aq NaHCO3 (50 μL), then diluted with CHCl3 (15 mL) and filtered through a Celite® pad. The residue was thoroughly washed with CHCl3 (50 mL), and the filtrate was successively washed with a mixture of sat. aq Na2S2O3 (50 mL) and sat. aq NaHCO3 (50 mL). The aqueous layer was extracted with CHCl3 (2 × 5 mL), and the combined organic extracts were filtered through a cotton wool plug, concentrated and dried in vacuo. The residue was applied to a column (50 × 2.5 cm) with Bio-Beads S×3 (200–400 mesh, Bio-Rad) which was then eluted with toluene using a differential refractometer (Knauer) as the detector. The first eluted fraction contained disaccharides 1317 (trisaccharides in the case of 27 and 28) and was concentrated, dried in vacuo and analyzed by NMR spectroscopy. Disaccharides 16 and 17 were subsequently separated by chromatography on SiO2.
    • 32a Podvalnyy NM. Abronina PI. Zdorovenko EL. Chizhov AO. Zinin AI. Torgov VI. Kononov LO. Russ. Chem. Bull. 2014; 63: 497
    • 32b Kondakov NN. Mel’nikova TM. Zinin AI. Torgov VI. Chizhov AO. Gordeeva EA. Bovin NV. Kononov LO. Russ. Chem. Bull. 2014; 63: 501
    • 32c Kondakov NN. Melnikova TM. Chekryzhova TV. Melnikova MV. Zinin AI. Torgov VI. Chizhov AO. Kononov LO. Russ. Chem. Bull. 2015; 64: 1142
  • 33 Magnusson G. Chernyak AY. Kihlberg J. Kononov LO. In Neoglycoconjugates: Preparation and Application . Lee YC. Lee RT. Academic Press; San Diego: 1994: 53
  • 34 Xu P. Yang JY. Kováč P. J. Carbohydr. Chem. 2012; 31: 710
  • 35 Zinin AI. Stepanova EV. Jost U. Kondakov NN. Shpirt AM. Chizhov AO. Torgov VI. Kononov LO. Russ. Chem. Bull. 2017; 66: 304
  • 36 Lee YS. Rho ES. Min YK. Kim BT. Kim KH. J. Carbohydr. Chem. 2001; 20: 503
  • 37 Gold H. Boot RG. Aerts JM. F. G. Overkleeft HS. Codée JD. C. van der Marel GA. Eur. J. Org. Chem. 2011; 1652
  • 38 Stévenin A. Boyer FD. Beau J.-M. J. Org. Chem. 2010; 75: 1783
  • 39 Kononov LO. Kornilov AV. Sherman AA. Zyrianov EV. Zatonski GV. Shashkov AS. Nifant’ev NE. Russ. J. Bioorg. Chem. 1998; 24: 537
  • 40 Yudina ON. Sherman AA. Nifantiev NE. Carbohydr. Res. 2001; 332: 363
  • 41 Liakatos A. Kiefel MJ. von Itzstein M. Org. Lett. 2003; 5: 4365
  • 42 Peng P. Linseis M. Winter RF. Schmidt RR. J. Am. Chem. Soc. 2016; 138: 6002
  • 43 Analytical data for 4-(3-Chloropropoxy)phenyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(3,4,6-tri-O-benzoyl-2-O-triisopropylsilyl-α-d-galactopyranosyl)-β-d-galactopyranosyl]-β-d-glucopyranoside (27) Rf = 0.26, light PE–EtOAc (3:1). [α]D 23 +71.2 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 0.72–0.92 (m, 21 H, 3 × i-Pr), 2.17 (dt~p, J = 6.1 Hz, 2 H, CH2), 3.71 (t, J = 6.3 Hz, 2 H, CH2Cl), 3.85–3.91 (m, 1 H, H-5II), 3.97 (t, J = 5.9 Hz, 2 H, CH2O), 4.03 (ddd, J 5,6b = 1.9 Hz, J 5,6a = 5.7 Hz, J 4,5 = 9.8 Hz, 1 H, H–5I), 4.15 (dd, J 5,6a = 6.8 Hz, J 6a,6b = 11.8 Hz, 1 H, H-6IIa), 4.30 (dd, J 5,6a = 7.4 Hz, J 6a,6b = 11.1 Hz, 1 H, H-6IIIa), 4.32 (mt, J = 9.2 Hz, 1 H, H-4I), 4.49–4.56 (m, 3 H, H-6Ia, H-4II, H-2III), 4.59 (dd, J 5,6b = 5.0 Hz, J 6a,6b = 11.8 Hz, 1 H, H-6IIb), 4.64 (dd, J 5,6b = 6.1 Hz, J 6a,6b = 11.1 Hz, 1 H, H-6IIIb), 4.73 (dd, J 5,6b = 1.9 Hz, J 6a,6b = 11.8 Hz, 1 H, H-6Ib), 4.77–4.82 (m, 1 H, H-5III), 4.97 (d, J 1,2 = 7.7 Hz, 1 H, H-1II), 5.10 (d, J 1,2 = 7.6 Hz, 1 H, H-1I), 5.29 (d, J 1,2 = 3.2 Hz, 1 H, H-1III), 5.38 (dd, J 3,4 = 2.6 Hz, J 2,3 = 10.7 Hz, 1 H, H-3II), 5.63 (dd, J 1,2 = 7.6 Hz, J 2,3 = 9.2 Hz, 1 H, H-2I), 5.69 (dd, J 3,4 = 3.3 Hz, J 2,3 = 10.3 Hz, 1 H, H-3III), 5.82 (dd~t, J = 9.1 Hz, 1 H, H-3I), 5.88 (dd, J 1,2 = 7.7 Hz, J 2,3 = 10.7 Hz, 1 H, H-2II), 5.95 (dd, J 4,5 = 1.6 Hz, J 3,4 = 3.3 Hz, 1 H, H-4III), 6.58–6.66 (m, 2 H, OC6H4O), 6.81–6.89 (m, 2 H, OC6H4O), 7.17–7.24 (m, 2 H, Ph), 7.25–7.62 (m, 25 H, Ph), 7.75–7.81 (m, 2 H, H-2(6) Ph), 7.84–7.91 (m, 2 H, H-2(6) (PhCO)), 7.91–7.96 (m, 4 H, H-2(6) (PhCO)), 7.98–8.02 (m, 4 H, H-2(6) (PhCO)), 8.02–8.06 (m, 2 H, H-2(6) (PhCO)), 8.06–8.10 (m, 2 H, H-2(6) (PhCO)), 8.14–8.19 (m, 2 H, H-2(6) (PhCO)). 13C NMR (101 MHz, CDCl3): δ = 12.5 (CH(CH3)2), 17.7 (CH(CH3)2), 17.9 (CH(CH3)2), 32.2 (CH2), 41.5 (CH2Cl), 62.0 (C-6III), 62.6 (C-6I), 63.1 (C-6II), 64.6 (CH2O), 67.8 (C-5III), 69.40 (C-2III or C-4III), 69.41 (C-4III or C-2III), 69.8 (C-2II), 70.5 (C-3III), 72.0 (C-2I), 72.7 (C-3I), 73.2 (C-5I), 73.8 (2 C, C-3II, C-5II), 74.4 (C-4II), 76.4 (C-4I), 99.8 (C-1III), 100.3 (C-1I), 100.9 (C-1II), 115.1 (OC6H4O), 118.8 (OC6H4O), 128.0 (Ph), 128.1 (Ph), 128.27 (Ph), 128.33 (Ph), 128.47 (Ph), 128.51 (Ph), 128.54 (Ph), 128.8 (Ph), 129.2 (Ph), 129.3 (Ph), 129.46 (Ph), 129.50 (Ph), 129.6 (Ph), 129.75 (Ph), 129.80 (Ph), 129.91 (Ph), 129.95 (Ph), 132.7 (Ph), 132.8 (Ph), 132.99 (Ph), 133.03 (Ph), 133.15 (Ph), 133.22 (2 C, Ph), 133.4 (Ph), 133.5 (Ph), 151.1 (C-1 OC6H4O), 154.6 (C-4 OC6H4O), 164.7, 165.1, 165.17, 165.19, 165.3, 165.6, 165.7, 165.8, 166.0 (CO). ESI-HRMS: m/z calcd for C99H97ClNaO26Si: 1787.5618; found: 1787.5614 [M + Na]+; m/z calcd for C99H101ClNO26Si: 1782.6064; found: 1782.6014 [M + NH4]+
  • 44 Müller D. Vic G. Critchley P. Crout DH. G. Lea N. Roberts L. Lord JM. J. Chem. Soc., Perkin Trans. 1 1998; 2287
  • 45 Pozsgay V. Carbohydr. Res. 2011; 346: 1551
  • 46 Pozsgay V. Glaudemans CP. J. Robbins JB. Schneerson R. Tetrahedron 1992; 48: 10249
  • 47 Totani K. Shinoda Y. Shiba M. Iwamoto S. Koizumi A. Matsuzaki Y. Hirano M. RSC Adv. 2015; 5: 75918
  • 48 Okada Y. Mukae T. Okajima K. Taira M. Fujita M. Yamada H. Org. Lett. 2007; 9: 1576
  • 49 Bols M. Pedersen CM. Beilstein J. Org. Chem. 2017; 13: 93