Synlett 2017; 28(08): 944-950
DOI: 10.1055/s-0036-1588944
letter
© Georg Thieme Verlag Stuttgart · New York

Total Syntheses of Atrovenetin and Atrovenetinone: A Naphthalene-Annulation Approach to a Discoid Tricycle Using Allenic Acid

Kyohei Matsushita
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   Email: ksuzuki@chem.titech.ac.jp   Email: kohmori@chem.titech.ac.jp
,
Keisuke Suzuki*
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   Email: ksuzuki@chem.titech.ac.jp   Email: kohmori@chem.titech.ac.jp
,
Ken Ohmori*
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   Email: ksuzuki@chem.titech.ac.jp   Email: kohmori@chem.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 12 December 2016

Accepted after revision: 09 January 2017

Publication Date:
06 February 2017 (online)


Abstract

A total synthesis of atrovenetin has been achieved. The discoid tricyclic motif was constructed by a novel three-carbon annulation of naphthalene derivative and allenic acid under acidic conditions. An effective protocol for the conversion of atrovenetin into atrovenetinone has been established.

Supporting Information

 
  • References and Notes

  • 1 Barton DH. R, de Mayo P, Morrison GA, Raistrick H. Tetrahedron 1959; 6: 48
    • 3a Ishikawa Y, Morimoto K, Iseki S. J. Am. Oil Chem. Soc. 1991; 68: 666
    • 3b Shiomi K, Matsui R, Isozaki M, Chiba H, Sugai T, Yamaguchi Y, Masuma R, Tomoda H, Chiba T, Yan H, Kitamura Y, Sugiura W, Ōmura S, Tanaka H. J. Antibiot. 2005; 58: 65
    • 3c Lu R, Liu X, Gao S, Zhang W, Peng F, Hu F, Huang B, Chen L, Bao G, Li C, Li Z. J. Agric. Food Chem. 2014; 62: 11917
    • 4a Shein SM. Zh. Prikl. Khim. 1959; 32: 2824
    • 4b Laundon B, Morrison GA, Brooks JS. Tetrahedron Lett. 1970; 11: 2301
    • 4c Sato T, Yokote M. J. Synth. Org. Chem. Jpn. 1982; 40: 839
    • 4d Zheng GC, Kojima T, Kakisawa H. Heterocycles 1988; 27: 1341
    • 4e Morita Y, Ohba T, Haneda N, Maki S, Kawai J, Hatanaka K, Sato K, Shiomi D, Takui T, Nakasuji K. J. Am. Chem. Soc. 2000; 122: 4825
  • 5 Büchi G, Leung JC. J. Org. Chem. 1986; 51: 4813
    • 6a Frost DA, Morrison GA. J. Chem. Soc., Chem. Commun. 1972; 93
    • 6b Frost DA, Morrison GA. J. Chem. Soc., Perkin Trans. 1 1973; 2388
    • 7a Ayer WA, Pedras MS, Ward DE. Can. J. Chem. 1987; 65: 760
    • 7b Ayer WA, Ma YT. Can. J. Chem. 1992; 70: 1905
    • 7c Hussain H, John M, Al-Harrasi A, Shah A, Hassan Z, Abbas G, Rana UA, Green IR, Schulz B, Krohn K. J. King Saud Univ., Sci. 2015; 27: 92
    • 8a Vézina C, Kudelski A, Sehgal SN. J. Antibiot. 1975; 28: 721
    • 8b Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H. J. Antibiot. 1987; 40: 1249
    • 9a Wasserman HH. Aldrichimica Acta 1987; 20: 63
    • 9b Jones TK, Mills SG, Reamer RA, Askin D, Desmond R, Volante RP, Shinkai I. J. Am. Chem. Soc. 1989; 111: 1157
    • 9c Wasserman HH, Ennis DS, Power PL, Ross MJ. J. Org. Chem. 1993; 58: 4785
    • 9d Rubin MB, Gleiter R. Chem. Rev. 2000; 100: 1121
    • 9e Wasserman HH, Parr J. Acc. Chem. Res. 2004; 37: 687
    • 9f Seitz T, Harms K, Koert U. Synthesis 2014; 46: 381
    • 10a Kürti L, Herczegh P, Visy J, Simonyi M, Antus S, Pelter A. J. Chem. Soc., Perkin Trans. 1 1999; 379
    • 10b Kao TC, Chuang GJ, Liao CC. Angew. Chem. Int. Ed. 2008; 47: 7325
    • 11a Cadman ML. F, Crombie L, Freeman S, Mistry J. J. Chem. Soc., Perkin Trans. 1 1995; 1397
    • 11b Crombie L, Mackenzie K. J. Chem. Soc. 1958; 4417
  • 12 Urdaneta NA, Salazar J, Herrera JC, López SE. Synth. Commun. 2004; 34: 657
  • 13 Bogatskii AV, Galantina AI, Derkach LG, Taubert D. J. Org. Chem. USSR (Engl. Transl.) 1981; 17: 2072
    • 14a Heilbron SI, Jones ER. H, Sondheimer F. J. Chem. Soc. 1949; 604
    • 14b Eglinton G, Jones ER. H, Mansfield GH, Whiting MC. J. Chem. Soc. 1954; 3197
  • 15 The reaction of 11 with 7 or 8 in the presence of TMSOTf in 1,2-dichloroethane (reflux, 3 h) gave the demethylated derivative of 11.
  • 16 The Z/E stereochemistry of 12 was assigned by 1H NMR analysis from the chemical shift of the allylic Me group (Z: δ = 2.34 ppm, E: δ = 2.61 ppm).
  • 17 The E configuration was assigned by 1H NMR analysis from the chemical shift of the allylic Me group (δ = 2.60 ppm).

    • Interestingly, the polarity of tricycle 14 was higher than that of carboxylic acid 15 (hexane–EtOAc, 70:30; 14: Rf = 0.07, 15: Rf = 0.31). For high polarity of phenalenone, see:
    • 18a Handa T. Bull. Chem. Soc. Jpn. 1955; 28: 483
    • 18b Reid DH. Q. Rev., Chem. Soc. 1965; 19: 274
    • 18c Zahradnik R, Tichy M, Reid DH. Tetrahedron 1968; 24: 3001
  • 19 Sikorski WH, Reich HJ. J. Am. Chem. Soc. 2001; 123: 6527 ; and references cited therein
  • 20 The phenyl ester was recovered together with 5.

    • For related cyclization and discussion on the mechanism, see:
    • 21a Saito T, Morimoto M, Akiyama C, Matsumoto T, Suzuki K. J. Am. Chem. Soc. 1995; 117: 10757
    • 21b Saito T, Suzuki T, Morimoto M, Akiyama C, Ochiai T, Takeuchi K, Matsumoto T, Suzuki K. J. Am. Chem. Soc. 1998; 120: 11633
    • 22a Shih NY, Mangiaracina P, Green MJ, Ganguly AK. Tetrahedron Lett. 1989; 30: 5563
    • 22b Cortizo L, Santana L, Ravina E, Orallo F, Fontenla JA, Castro E, Calleja JM, de Ceballos ML. J. Med. Chem. 1991; 34: 2242
  • 23 Reaction of naphthalene 4 by using dichloride 9 gave a mixture of the undesired tricycle 24 and the desired tricycle 21 together with monoacylation product 25. Isomers 24 and 21 were separable by preparative TLC (hexane–EtOAc, 50:50; 24: Rf = 0.15; 21: Rf = 0.24). The 1H NMR, 13C NMR, and IR data were quite similar (Scheme 8).
  • 24 Experimental Procedure for Annulation of a Naphthalene Derivative with Allenic Acid To a solution of naphthalene 4 (259 mg, 0.780 mmol) and allenic acid 10 (85.2 mg, 1.01 mmol) in DCE (7.8 mL) was added TMSOTf (425 μL, 2.34 mmol) at 0 °C. After stirring for 6 h, the resulting solution was allowed to warm to r.t. After additional stirring for 12 h, the reaction mixture was quenched by adding sat. aq NaHCO3. The crude products were extracted with CH2Cl2 (3×), and combined organic extracts were washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel; CHCl3–MeOH, 99:1 → 98:2) to afford tetracycle 21 (264 mg, 85%) as a yellow green crystal. Compound 21: Rf = 0.24 (hexane–EtOAc, 50:50); mp 158–159 °C (EtOAc–hexane). 1H NMR (600 MHz, CDCl3): δ = 1.31 (s, 3 H), 1.44 (d, J = 6.0 Hz, 3 H), 1.56 (s, 3 H), 2.59 (s, 3 H), 3.93 (s, 3 H), 4.01 (s, 3 H), 4.02 (s, 3 H), 4.06 (s, 3 H), 4.52 (q, J = 6.0 Hz, 1 H), 6.46 (s, 1 H). 13C NMR (150 MHz, CDCl3): δ = 14.5, 22.0, 24.2, 25.8, 44.0, 61.5, 61.9, 62.8, 63.9, 89.8, 106.5, 115.3, 119.0, 128.3, 123.0, 130.2, 144.6, 147.2, 154.8, 156.8, 159.8, 161.6, 183.2. IR (ATR): 2960, 2924, 1631, 1616, 1591, 1548, 1394, 1379, 1362, 1326, 1279, 1250, 1201, 1156, 1140, 1106, 1066, 1048, 1028, 997, 982, 973, 939, 883, 841, 798, 702 cm–1. ESI-HRMS: m/z calcd for C23H27O6 [M + H]+: m/z = 399.1802; found: 399.1816.
  • 25 Brooks JS. Morrison G. A., J. Chem. Soc., Perkin Trans. 1 1972; 421
  • 26 Narasimhachari N, Vining LC. Can. J. Chem. 1963; 41: 641
  • 27 Yonekawa M, Furusho Y, Sei Y, Takata T, Endo T. Tetrahedron 2013; 69: 4076
  • 28 Ayer WA, Hoyano Y, Pedras MS, Altena IV. Can. J. Chem. 1986; 64: 1585