Synlett 2017; 28(05): 560-564
DOI: 10.1055/s-0036-1588915
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Photochemistry of a New Photolabile Protecting Group for Propargylic Alcohols

Chi Ma
a   School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. of China   Email: zhanghuan80887@163.com   Email: youlaimail@163.com
,
Youlai Zhang*
a   School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. of China   Email: zhanghuan80887@163.com   Email: youlaimail@163.com
,
Huan Zhang*
a   School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. of China   Email: zhanghuan80887@163.com   Email: youlaimail@163.com
,
Junru Li
a   School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. of China   Email: zhanghuan80887@163.com   Email: youlaimail@163.com
,
Yasuhiro Nishiyama
b   Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
,
Hiroki Tanimoto
b   Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
,
Tsumoru Morimoto
b   Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
,
Kiyomi Kakiuchi
b   Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
› Author Affiliations
Further Information

Publication History

Received: 03 September 2016

Accepted after revision: 21 October 2016

Publication Date:
15 November 2016 (online)


Abstract

A new and efficient thiochromenone S,S-dioxide-based photolabile protecting group for propargylic alcohols is described. Robust protection reactions were developed through copper (II)-catalyzed substitution of propargylic alcohols. Subsequent photodeprotection proceeded smoothly to give the corresponding propargylic alcohols quantitatively within 15 minutes, as demonstrated by 1H NMR spectroscopy and HPLC. Notably, the photoproduct derived from the thiochromenone derivatives showed a high fluorescence quantum yield, permitting monitoring of the reaction progress by fluorescence spectroscopy. A new strategy for the synthesis of triazoles by a one-pot reaction is also presented.

Supporting Information

 
  • References and Notes

  • 1 Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . 4th ed. Wiley; New York: 2006
    • 2a Blake JA, Lukeman M, Scaiano JC. J. Am. Chem. Soc. 2009; 131: 4127
    • 2b Russell AG, Ragoussi M.-E, Ramalho R, Wharton CW, Carteau D, Bassani DM, Snaith JS. J. Org. Chem. 2010; 75: 4648
    • 2c Fodor SP. A, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL. Nature 1993; 364: 555
    • 3a Mayer G, Heckel A. Angew. Chem. Int. Ed. 2006; 45: 4900
    • 3b Igarashi T, Shimokawa M, Iwasaki M, Nagata K, Fujii M, Sakurai T. Synlett 2007; 1436
    • 3c Bochet CG. J. Chem. Soc., Perkin Trans. 1 2002; 2: 125
    • 4a Fodor SP. A, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Science 1991; 251: 767
    • 4b McGall GH, Barone AD, Diggelmann M, Fodor SP. A, Gentalen E, Ngo N. J. Am. Chem. Soc. 1997; 119: 5081
    • 5a Guillier F, Orain D, Bradley M. Chem. Rev. 2000; 100: 2091
    • 5b Pelliccioli AP, Wirz J. Photochem. Photobiol. Sci. 2002; 1: 441
    • 6a Šolomek T, Mercier S, Bally T, Bochet CG. Photochem. Photobiol. Sci. 2012; 11: 548
    • 6b Bochet CG. Tetrahedron Lett. 2000; 41: 6341
    • 6c Tanabe KK, Allen C, Cohen SM. Angew. Chem. Int. Ed. 2010; 49: 9730
    • 7a Moth-Poulsen K, Kofod-Hansen V, Kamounah FS, Hatzakis NS, Stamou D, Schaumburg K, Christensen JB. Bioconjugate Chem. 2010; 21: 1056
    • 7b Amit B, Ben-Efraim D, Patchornik A. J. Am. Chem. Soc. 1976; 98: 843
  • 8 Eckardt T, Hagen V, Schade B, Schmidt R, Schweitzer C, Bendig J. J. Org. Chem. 2002; 67: 703
    • 9a Givens RS, Park C.-H. Tetrahedron Lett. 1996; 37: 6259
    • 9b Givens RS, Jung A, Park C.-H, Weber J, Bartlett W. J. Am. Chem. Soc. 1997; 119: 8369
    • 10a Huffman KR, Loy M, Ullman EF. J. Am. Chem. Soc. 1965; 87: 5417
    • 10b Rossollin V, Lokshin V, Samat A, Guglielmetti R. Tetrahedron 2003; 59: 7725
  • 11 Kitani S, Sugawara K, Tsutsumi K, Morimoto T, Kakiuchi K. Chem. Commun. 2008; 2103
  • 12 Zhang Y, Tanimoto H, Nishiyama Y, Morimoto T, Kakiuchi K. Synlett 2012; 367
  • 13 Sugiura R, Kozaki R, Kitani S, Gosho Y, Tanimoto H, Nishiyama Y, Morimoto T, Kakiuchi K. Tetrahedron 2013; 69: 3984
  • 14 Sasaki Y, Sugiura R, Nishiyama Y, Tanimoto H, Morimoto T, Kakiuchi K. Tetrahedron 2014; 70: 7973
    • 15a Reddy CR, Ranjan R, Kumaraswamy P, Reddy MD, Grée R. Curr. Org. Chem. 2014; 18: 2603
    • 15b Dai M, Sarlah D, Yu M, Danishefsky SJ, Jones GO, Houk KN. J. Am. Chem. Soc. 2007; 129: 645
    • 15c Orski SV, Poloukhtine A, Arumugam S, Mao L, Popik VV, Locklin J. J. Am. Chem. Soc. 2010; 132: 11024
    • 16a Chatterjee PN, Roy S. J. Org. Chem. 2010; 75: 4413
    • 16b Harschneck T, Kirsch SF. J. Org. Chem. 2011; 76: 2145
    • 16c Kalek M, Himo F. J. Am. Chem. Soc. 2012; 134: 19159
    • 16d Beatrice SL, Collins MG. S, Matthew JG. Angew. Chem. Int. Ed. 2013; 52: 5799
  • 17 Gschneidtner TA, Moth-Poulsen K. Tetrahedron Lett. 2013; 54: 5426
  • 18 Starke F, Walther M, Pietzsch H.-J. ARKIVOC 2010; (xi): 350
  • 19 For experiments on the selectivity of the reactions of PLPG 1 with propargylic alcohols and non-propargylic alcohols, see the Supporting Information.
    • 20a Schwier T, Rubin M, Gevorgyan V. Org. Lett. 2004; 6: 1999
    • 20b Nicholas KM, Mulvaney M, Bayer M. J. Am. Chem. Soc. 1980; 102: 2508
    • 20c Nishibayashi Y, Wakiji I, Hidai M. J. Am. Chem. Soc. 2000; 122: 11019
  • 21 Hui H.-h, Zhao Q, Yang M.-y, She D.-b, Chen M, Huang G.-s. Synthesis 2008; 191
  • 22 2-{[(1,1-Dimethyl-3-phenylprop-2-yn-1-yl)oxy]methyl}-3-phenyl-4H-thiochromen-4-one 1,1-Dioxide (2a) Yellow oil; yield: 38.5 mg (87%). 1H NMR (400 MHz, CDCl3): δ = 8.18 (dd, J = 8.0, 0.8 Hz, 1 H), 8.12 (dd, J = 8.0, 0.8 Hz, 1 H), 7.87 (ddd, J = 8.0, 7.6, 1.2 Hz, 1 H), 7.75 (ddd, J = 8.0, 7.6, 1.2 Hz, 1 H), 7.43–7.38 (m, 3 H), 7.36–7.34 (m, 2 H), 7.30–7.27 (m, 5 H), 4.61 (s, 2 H), 1.53 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 179.0, 147.3, 144.2, 141.0, 134.5, 132.9, 131.7, 131.4, 129.5, 129.33, 129.30, 128.8, 128.3, 128.1, 128.0, 123.2, 122.5, 89.8, 85.6, 72.0, 58.1, 28.5. HRMS (ESI): m/z [M + H]+ calcd for C27H23O4S: 443.1317; found: 443.1327. For 2bf, see Supporting Information.
  • 23 Monitored by 1H NMR. No decomposition of 2af in CDCl3 was observed during 7 days under laboratory lighting.
  • 24 Zhang H, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Org. Lett. 2013; 15: 5222