Synlett 2017; 28(04): 489-493
DOI: 10.1055/s-0036-1588914
letter
© Georg Thieme Verlag Stuttgart · New York

A Facile Synthesis of N-Alkoxyacylimidoyl Halides from α-Nitro Ketones and Alkyl Halides in the Presence of NaHSO4/SiO2

Tadashi Aoyama*
a   Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Ken-ichi Itoh
b   Department of Liberal Arts and Science, College of Science and Technology, Nihon University, 7-24-1, Narashinodai, Funabashi-shi, Chiba 274-8501, Japan
,
Yuri Furukawa
a   Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Mamiko Hayakawa
a   Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Shigeru Shimada
c   National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
,
Akihiko Ouchi
a   Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 05 September 2016

Accepted after revision: 23 October 2016

Publication Date:
21 November 2016 (online)


Abstract

A novel method was developed for the synthesis of N-alkoxyacylimidoyl halide by the reaction of α-nitro ketone and alkyl halides in the presence of NaHSO4/SiO2. Nitrile oxides that are generated from α-nitro ketones by silica gel supported acid catalysts are the possible intermediate, which react with alkyl halides to form N-alkoxyacylimidoyl halides. Novel 17 N-alkoxyacylimidoyl halides were synthesized by this procedure.

Supporting Information

 
  • References and Notes

    • 1a Sakamoto T, Okamoto K, Kikugawa Y. J. Org. Chem. 1992; 57: 3245
    • 1b Corey EJ, Niimura K, Konishi Y, Hashimoto S, Hamada Y. Tetrahedron Lett. 1986; 27: 2199
    • 1c Sakamoto T, Kikugawa Y. Synthesis 1993; 563
    • 1d Sakamoto T, Mori H, Takizawa M, Kikugawa Y. Synthesis 1991; 750
    • 1e Kikugawa Y, Fu LH, Sakamoto T. Synth. Commun. 1993; 23: 106
    • 1f Peter de Lijser HJ, Burke CR, Rosenberg J, Hunter J. J. Org. Chem. 2009; 74: 1679
    • 1g Bromidge SM, Brown F, Cassidy F, Clark MS. G, Dabbs S, Hawkins J, Loudon JM, Orlek BS, Riley GJ. Bioorg. Med. Chem. Lett. 1992; 2: 791
    • 1h Dolliver DD, Sommerfeld T, Lanier ML, Dinser JA, Rucker RP, Weber RJ, McKim AS. J. Phys. Org. Chem. 2010; 23: 227
    • 1i Johnson JE, Todd SL, Dutson SM, Ghafouripour A, Alderman RM, Hotema MR. J. Org. Chem. 1992; 57: 4648
    • 1j Lemercier BC, Pierce JG. J. Org. Chem. 2014; 79: 2321
    • 2a Chinnagolla RK, Pimparkar S, Jeganmohan M. Chem. Commun. 2013; 49: 3703
    • 2b Jiang H, Sun L, Yuan S, Lu W, Wan W, Zhu S, Hao J. Tetrahedron 2012; 68: 2858
    • 2c Kalusa A, Chessum N, Jones K. Tetrahedron Lett. 2008; 49: 5840
    • 3a Dolliver DD, Bhattarai BT, Pandey A, Lanier ML, Bordelon AS, Adhikari S, Dinser JA, Flowers PF, Wills VS, Schneider CL, Shaughnessy KH, Moore JN, Raders SM, Snowden TS, McKim AS, Fronczek FR. J. Org. Chem. 2013; 78: 3676
    • 3b Ueda M, Sugita S, Aoi N, Sato A, Ikeda Y, Ito Y, Miyoshi T, Naito T, Miyata O. Chem. Pharm. Bull. 2011; 59: 1206
    • 3c Li S, Zhu J, Xie H, Chen Z, Wu Y. J. Fluorine Chem. 2011; 132: 196
    • 3d Wu Y.-M, Zhang M, Li Y.-Q. J. Fluorine Chem. 2006; 127: 218
  • 4 Aliyu AO. C, Salawu OW, Onoja PK. J. Chem. Pharm. Res. 2013; 5: 129
  • 5 de Lijser HJ. P, Rangel NA, Tetalman MA, Tsai C.-K. J. Org. Chem. 2007; 72: 4126
    • 6a Liu K.-C, Shelton BR, Howe RK. J. Org. Chem. 1980; 45: 3916
    • 6b Chinnagolla RK, Pimparkar S, Jeganmohan M. Chem. Commun. 2013; 49: 3146
  • 7 Miyata O, Koizumi T, Asai H, Iba R, Naito T. Tetrahedron 2004; 60: 3893
  • 8 Johnson JE, Ghafouripour A, Arfan M, Todd SL, Sitz DA. J. Org. Chem. 1985; 50: 3348
    • 9a Sakamoto T, Mori H, Takizawa M, Kikugawa Y. Synthesis 1991; 750
    • 9b Sakamoto T, Okamoto K, Kikugawa Y. J. Org. Chem. 1992; 57: 3245
    • 9c Kikugawa Y, Fu LH, Sakamoto T. Synth. Commun. 1993; 23: 1061
  • 10 Johnson JE, Maia JA, Tan K, Ghafouripour A, de Meester P, Chu SS. C. J. Heterocycl. Chem. 1986; 23: 1861
  • 11 Aoyama T, Miyota S, Takido T, Kodomari M. Synlett 2011; 2971
  • 12 Sato Y, Aoyama T, Takido T, Kodomari M. Tetrahedron 2012; 68: 7077
  • 13 Aoyama T, Koda S, Takeyoshi Y, Ito T, Takido T, Kodomari M. Chem. Commun. 2013; 49: 6605
  • 14 Hayakawa M, Aoyama T, Kobayashi T, Takido T, Kodomari M. Synlett 2014; 25: 2365
    • 15a Aoyama T, Hayakawa M, Kubota S, Ogawa S, Nakajima E, Mitsuyama E, Iwabuchi T, Kaneko H, Obara R, Takido T, Kodomari M. Synthesis 2015; 47: 2945
    • 15b Aoyama T, Hayakawa M, Ogawa S, Nakajima E, Mitsuyama E, Iwabuchi T, Takido T, Kodomari M. Synlett 2014; 25: 2493
  • 17 Belen’kii LI In Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. Feuer H. John Wiley & Sons Inc; New York: 2008: 19
  • 18 Itoh K.-I, Aoyama T, Satoh H, Fujii Y, Sakamaki H, Takido T, Mitsuo K. Tetrahedron Lett. 2011; 52: 6892
  • 19 Chu WC, Chan FF, Yeh MY. Tetrahedron 2002; 58: 10437
  • 20 Grundmann C, Frommeld H.-D. J. Org. Chem. 1966; 31: 157
  • 21 Benn MH. Can. J. Chem. 1964; 42: 2393
  • 22 Typical Procedure for the Synthesis of N-Alkoxyacylimidoyl Halide: A mixture of α-nitro ketone 1 (1 mmol), alkyl halide 2 (6 mmol) and NaHSO4/SiO2 (2.1 mmol/g, 0.5 g) in toluene (10 mL) was stirred at 80 °C for 8 h, and then the used supported reagent was removed by filtration. The filtrate was evaporated to leave the crude product, which was purified by column chromatography (hexane–EtOAc) to obtain N-alkoxyacylimidoyl halide 3 (see Supporting Information). Typical Data for Representative Compound; N-Diphenylmethyloxy(benzoylformimidoyl Bromide) (3ag): white solid; mp 71–72 °C (n-hexane). 1H NMR (400 MHz, CDCl3): δ = 7.62–7.64 (m, 2 H), 7.49–7.53 (m, 1 H), 7.34–7.42 (m, 10 H), 7.24–7.28 (m, 2 H), 6.46 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 183.6, 139.6, 134.2, 133.5, 131.1, 130.9, 128.6, 128.3, 128.1, 127.5, 89.2. IR (neat): 1665, 1559 cm–1. HRMS (ESI, MeOH): m/z [M + Na] calcd for C21H16NO2NaBr: 416.0262; found: 416.0264. Anal. Calcd for C21H16NO2Br: C, 63.97; H, 4.09; N, 3.55. Found: C, 64.06; H, 3.95; N, 3.53.