Synlett 2017; 28(13): 1596-1600
DOI: 10.1055/s-0036-1588795
letter
© Georg Thieme Verlag Stuttgart · New York

Reinvestigation of the Biomimetic Cyclization of 3,5-Diketo Esters: Application to the Total Synthesis of Cyercene A, an α-Methoxy-γ-Pyrone-Containing Polypropionate

Kai Onda
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: sakakura@okayama-u.ac.jp
,
Ichiro Hayakawa
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: sakakura@okayama-u.ac.jp
,
Akira Sakakura*
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: sakakura@okayama-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 23 February 2017

Accepted after revision: 26 March 2017

Publication Date:
26 April 2017 (online)


Abstract

The biomimetic cyclization of 3,5-diketo esters was reinvestigated for the synthesis of α-methoxy-γ-pyrones. 3,5-Diketo esters were selectively synthesized via the aldol reaction of commercially available methyl 2-methyl-3-oxopentanoate with an aldehyde followed by the oxidation with AZADOL® and PhI(OAc)2. The DBU-promoted intramolecular transesterification of 3,5-diketo esters showed excellent reactivity in MeOH, to give the corresponding γ-hydroxy-α-pyrones in high yields under mild reaction conditions. Based on the present cyclization scheme, the total synthesis of cyercene A was achieved.

Supporting Information

 
  • References and Notes

    • 1a Davies-Coleman MT. Garson MJ. Nat. Prod. Rep. 1998; 15: 477
    • 1b Ireland C. Faulkner J. Tetrahedron 1981; 37 (Suppl. 01) 233
  • 2 Hertweck C. Angew. Chem. Int. Ed. 2009; 48: 4688
    • 3a Sharma P. Powell KJ. Burnley J. Awaad AS. Moses JE. Synthesis 2011; 2865
    • 3b Moses JE. Baldwin JE. Brückner S. Eade SJ. Adlington RM. Org. Biomol. Chem. 2003; 1: 3670
    • 3c Yamamura S. Nishiyama S. Bull. Chem. Soc. Jpn. 1997; 70: 2025
    • 4a Sakakura A. Watanabe H. Ishihara K. Org. Lett. 2008; 10: 2569
    • 4b Sakakura A. Watanabe H. Nakagawa S. Ishihara K. Chem. Asian J. 2007; 2: 477
    • 5a Shimamura H. Sunazuka T. Izuhara T. Hirose T. Shiomi K. Ōmura S. Org. Lett. 2007; 9: 65
    • 5b Jacobsen MF. Moses JE. Adlington RM. Baldwin JE. Org. Lett. 2005; 7: 641
    • 5c Garey D. Ramirez M.-L. Gonzales S. Wertsching A. Tith S. Keefe K. Peña MR. J. Org. Chem. 1996; 61: 4853
    • 5d Ishibashi Y. Ohba S. Nishiyama S. Yamamura S. Tetrahedron Lett. 1996; 37: 2997
    • 6a Rodriguez R. Adlington RM. Eade SJ. Walter MW. Baldwin JE. Moses JE. Tetrahedron 2007; 63: 4500
    • 6b Liang G. Miller AK. Trauner D. Org. Lett. 2005; 7: 819
    • 6c Moses JE. Baldwin JE. Adlington RM. Tetrahedron Lett. 2004; 45: 6447
  • 7 Beak P. Lee J.-K. J. Org. Chem. 1975; 40: 147
  • 8 The Claisen-type condensation of methyl 2-methyl-3-oxopentanoate with a carboxylic acid derivative, such as an ester or carboxylic acid chloride, gave the corresponding 3,5-diketo esters in poor yields.
  • 9 Arimoto H. Ohba S. Nishiyama S. Yamamura S. Tetrahedron Lett. 1994; 35: 4581
  • 10 Shibuya M. Tomizawa M. Suzuki I. Iwabuchi Y. J. Am. Chem. Soc. 2006; 128: 8412
  • 11 Typical Procedure for the DBU-Promoted Cyclization of 2e: To a stirred solution of 3,5-diketo ester 2e (35.8 mg, 0.149 mmol) in MeOH (3.0 mL) was added DBU (0.045 mL, 0.30 mmol) at ambient temperature. After being stirred at ambient temperature for 30 min, the mixture was diluted with 1 M aq HCl (1.0 mL) and extracted with Et2O (3 × 6.0 mL). The combined extracts were dried (Na2SO4), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.40 g, CHCl3–MeOH, 20:1) to give α-pyrone 4e (27.9 mg, 89%) as a colorless amorphous solid. Analytical Data for 4e: IR (neat): 3105, 3018, 2969, 2933, 1658, 1562, 1214, 776 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.65 (t, J = 7.5 Hz, 1 H), 2.17 (dt, J = 7.5, 7.5 Hz, 2 H), 2.02 (s, 6 H), 1.85 (s, 3 H), 1.02 (t, J = 7.5 Hz, 3 H); the signal due to one proton (OH) was not observed. 13C NMR (100 MHz, CDCl3): δ = 166.3, 166.0, 159.0, 138.3, 126.9, 106.9, 98.8, 21.5, 14.5, 13.4, 11.5, 8.7. HRMS (ESI+): m/z calcd for C12H16NaO3: 231.0946; found: 231.1000.
  • 12 It was conceivable that these polar solvents might contribute to the stabilization of the bent conformation of 2e to accelerate the cyclization.
    • 13a Calculations for 2a were carried out based on a DFT calculation at the B3LYP/6-31G* level. Conformation analysis and geometry optimization of 2a were performed with the package SPARTAN’16 (Wavefunction Inc., Irvine, CA).
    • 13b The calculated lowest-energy conformer of the 2,4-syn diastereomer is shown in Scheme 4.
  • 14 See the Supporting Information for more details.
    • 15a Vardaro RR. Di Marzo V. Crispino A. Cimino G. Tetrahedron 1991; 47: 5569
    • 15b Di Marzo V. Vardaro RR. De Petrocellis L. Villani G. Minei R. Cimino G. Experientia 1991; 47: 1221
    • 16a Fukuyama T. Lin S.-C. Li L. J. Am. Chem. Soc. 1990; 112: 7050
    • 16b Evans DA. Trotter BW. Côté B. Coleman PJ. Angew. Chem., Int. Ed. Engl. 1997; 36: 2741