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Abstract A series of strong Brensted acids has been synthesized in
high yields using N-triflylphosphorimidoyl trichloride as reagent. The
syntheses proceed efficiently with electron-rich, electron-deficient, and
sterically hindered substrates.
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Over the last decade, chiral phosphoric acid catalysts
have attracted great attention because of their remarkable
reactivity and ease of handling.! Since Akiyama and Terada
had reported successful application of BINOL-derived phos-
phoric acids or their salts as catalysts in Mannich reactions,
numerous catalyst variations have been developed by mod-
ifying the 3,3'-substituents of the BINOL backbone.? Fur-
thermore, the Yamamoto group demonstrated that the ac-
tivity of phosphoric acid catalysts can be enhanced by re-
placing the OH group with an N-triflyl group.? Due to the
higher acidity of the resulting N-triflylphosphoramides,
several groups successfully reported asymmetric reactions
which could not be accomplished using the original phos-
phoric acids.* However, despite their utility, the synthesis
of these catalysts requires a two-step procedure which in-
volves a solvent change and a relatively long reaction time
under heating.3” During our studies on the development of
even stronger Bransted acid catalysts, we recently reported
a practical method to introduce N-triflyl groups to molecu-
lar structures using N-triflylphosphorimidoyl trichloride
(1) as a reagent (Scheme 1). We have prepared this sub-
stance in a solid-state reaction between phosphorous pen-
tachloride (PCls) and trifluoromethansulfonylamide under
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reduced pressure.® When compound 1 was reacted with
different BINOLs (2) in the presence of triethylamine or
diisopropylethylamine in THF or toluene, intermediate 3
was formed within ten minutes. Adding 0.5 equivalent of
ammonia or hexamethyldisilazane afforded the corre-
sponding N-triflylphosphoramidimidate 4 in situ. With fur-
ther heating under reflux, novel imidodiphosphorimidates
(IDPi) 5 were obtained successively. On the basis of this ob-
servation, we wondered if it was possible to establish a new
approach to Yamamoto catalysts, simply by hydrolyzing in-
termediate 3. Herein we report the fruition of these efforts
with a general approach to various N-triflyl-substituted
chiral Bregnsted acids.
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Scheme 1 Preparation of N-triflylphosphorimidoyl trichloride 1 and its
application to the synthesis of imidodiphosphorimidates 5
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Indeed, most BINOLs 2a-f, upon reaction with reagent 1
in dichloromethane and DIPEA, gave the corresponding in-
termediate 3 within 10 minutes. With sterically hindered
BINOL 2g, the reaction took 1 hour until completion. Fur-
ther reaction with water required only 10 minutes with
chlorides 3a-f and 1 hour with compound 3g to furnish the
corresponding acids. Products 6a-g were obtained in >80%
yield regardless of the electronic or steric properties of the
BINOL starting material (Table 1).

Table 1 Substrate Scope of the Yamamoto-Type Brensted Acid Syn-
thesis?
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Entry Product Config. R Yield (%)
1 6a S Ph 98
2 6b R 4-PhCeH, 97
3 6¢ S 1-Naph 90
4 6d R 2-Naph 96
5 6e S 9-phenanthryl 89
6 6f S 3,5-(CF;),CeHs3 97
7 6g S 2,4,6-i-Pr,CgH,b 82

2 Reactions were performed with 2 (1.0 equiv), 1 (1.1 equiv), and DIPEA
(5.0 equiv) in CH,Cl, (0.25 mL) for 10 min, and then H,0 (20 pL) was added
to hydrolyze the intermediates 3.

®In this case, substitution and hydrolysis reactions each took 1 h.

Next, we applied our method to synthesize other strong
Bronsted acids (Scheme 2). In 2008, the Yamamoto group
exchanged the oxo group of their catalysts with a thio
group. The resulting more acidic N-triflylthiophosphora-
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Scheme 2 Synthesis of N-triflylthiophosphoramides and N,N'-bis(tri-
flyl)phosphoramidimidates

mides successfully enabled catalytic enantioselective pro-
tonation reactions.” Later, our group exchanged the oxo
group with an N-triflyl imino group expecting an even fur-
ther increase in acidity.® In order to also obtain these two
stronger acid motifs, intermediate 3 was reacted with H,S
or with triflamide, respectively. The target acids 7 and 8
were readily obtained within 20 minutes or 1 day, depend-
ing on the substrates.

In summary, we have established a simple and practical
route to synthesize strong chiral Brgnsted acids. The meth-
od is effective for the preparation of N-triflylphosphor-
amides with electron-deficient, electron-rich, and sterically
demanding substrates.® Furthermore, both of N-triflylthio-
phosphoramides and N,N'-bis(triflyl)phosphoramidimi-
dates were prepared in high yields within one day. Further
use of reagent 1 in catalyst development is currently under-
way in our laboratory.
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