Synlett 2017; 28(11): 1321-1326
DOI: 10.1055/s-0036-1588760
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Highly Efficient Esterification of Aldehydes with N-Hydroxyphthalimide via Cross-Dehydrogenative Coupling in Water at Room Temperature

Zhicheng Guo
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: pharmlab@zjut.edu.cn
,
Xinpeng Jiang
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Can Jin*
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Jiadi Zhou
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: pharmlab@zjut.edu.cn
,
Bin Sun
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: pharmlab@zjut.edu.cn
,
Weike Su*
a   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: pharmlab@zjut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 18 January 2017

Accepted after revision: 27 February 2017

Publication Date:
27 March 2017 (online)


Abstract

A copper-catalyzed cross-dehydrogenative coupling reaction between N-hydroxyphthalimide and aldehydes using PhI(OAc)2 as an oxidant is described. It is reported for the first time to synthesize NHPI esters in water, providing the corresponding NHPI esters in moderate to good yields. This facile and efficient method is eco-friendly and possesses the advantages of mild conditions, short reaction time, and broad substrate scope.

Supporting Information

 
  • References and Notes

    • 1a Ansari HR. Curtis AJ. J. Soc. Cosmet. Chem. 1974; 25: 203
    • 1b Majji G. Guin S. Rout SK. Behera A. Patel BK. Chem. Commun. 2014; 50: 12193
    • 1c Wang Q. Geng H. Chai W. Zeng XJ. Xu M. Zhu C. Fu RZ. Yuan RX. Eur. J. Org. Chem. 2014; 6850
    • 2a Montalbetti CA. G. N. Falque V. Tetrahedron 2005; 61: 10827
    • 2b Valeur E. Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 2c Pattabiraman VR. Bode JW. Nature (London, U.K.) 2012; 480: 471
    • 2d Santra SK. Banerjee A. Rajamanickam S. Khatun N. Patel BK. Chem. Commun. 2016; 54: 4501
    • 2e Rout SK. Guin S. Ali W. Gogoi A. Patel BK. Org. Lett. 2014; 16: 3086
    • 2f Rout SK. Guin S. Gogoi A. Majji G. Patel BK. Org. Lett. 2014; 16: 1614
    • 2g Majji G. Rout SK. Rajamanickam S. Guin S. Patel BK. Org. Biomol. Chem. 2016; 14: 8178
    • 2h Banerjee A. Sarkar S. Patel BK. Org. Biomol. Chem. 2017; 15: 505
    • 2i Rout SK. Guin S. Banerjee A. Khatun N. Gogoi A. Patel BK. Org. Lett. 2013; 15: 4016
    • 2j Rout SK. Guin S. Ghara KK. Banerjee A. Patel BK. Org. Lett. 2012; 14: 3982
  • 3 Takacs JM. Schroeder SD. Han J. Gifford M. Jiang X.-T. Saleh T. Vayalakkada S. Yap AH. Org. Lett. 2003; 5: 3595
  • 4 Alaninea A. Boursonb A. Buttelmanna B. Gillb R. Heitza MP. Mutelb V. Pinarda E. Trubeb G. Wylera R. Bioorg. Med. Chem. Lett. 2003; 13: 3155
  • 5 Bahta M. Lountos GT. Dyas B. Kim SE. Ulrich RG. Waugh DS. Burke TR. J. Med. Chem. 2011; 54: 2933
  • 6 Nieto L. Mascaraque A. Miller F. Glacial F. Martinez CR. Kaiser M. Brun R. Dardonville C. J. Med. Chem. 2011; 54: 485
    • 7a Wang MZ. Xu H. Liu TW. Feng Q. Yu SJ. Wang SH. Li ZM. Eur. J. Med. Chem. 2011; 46: 1463
    • 7b Huang JX. Jia YM. Liang XM. Zhu WJ. Zhang JJ. Dong YH. Qi SH. Wu JP. Chen FH. Wang FH. J. Agric. Food Chem. 2007; 55: 10857
    • 7c Li Y. Zhang HQ. Liu J. Yang XP. Liu ZJ. J. Agric. Food Chem. 2006; 54: 3636
    • 8a Grochowski E. Jurczak J. Synthesis 1977; 277
    • 8b Ogura H. Kobayashi T. Shimizu K. Kawabe K. Takeda K. Tetrahedron Lett. 1979; 20: 4745
    • 8c Kim S. Ko KY. J. Chem. Soc., Chem. Commun. 1985; 473
    • 8d Pochlauer P. Hendel W. Tetrahedron 1998; 54: 3489
    • 8e Kim M. Han KJ. Synth. Commun. 2009; 39: 4467
  • 9 Tan B. Toda N. Barbas CF. III. Angew. Chem. Int. Ed. 2012; 51: 12538
  • 10 Dinda M. Bose C. Ghosh T. Maity S. RSC Adv. 2015; 5: 44928
  • 11 Lv YH. Sun K. Pu WY. Mao SK. Li G. Niu JJ. Chen Q. Wang TT. RSC Adv. 2016; 6: 93486
    • 12a Banks RE. J. Fluorine Chem. 1998; 87: 1
    • 12b Nyfeler PT. Duron SG. Burkart MD. Vincent SP. Wong C. -H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 12c Vincent SP. Burkart MD. Tsai CY. Zhang Z. Wong CH. J. Org. Chem. 1999; 64: 5264
    • 13a Jin Z. Hidinger RS. Xu B. Hammond GB. J. Org. Chem. 2012; 77: 7725
    • 13b Surmont R. Verniest G. De Kimpe N. J. Org. Chem. 2011; 76: 4105
    • 13c Bi JJ. Zhang ZG. Liu QF. Zhang GS. Green Chem. 2012; 14: 1159
    • 13d Barker TJ. Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
    • 13e Radwan-Olszewska K. Palacios F. Kafarski P. J. Org. Chem. 2011; 76: 1170
    • 13f Troegel B. Lindel T. Org. Lett. 2012; 14: 468
    • 13g Zhou C. Li J. Lu B. Fu CL. Ma SM. Org. Lett. 2008; 10: 581
    • 13h Verniest G. Hende EV. Surmont R. De Kimpe N. Org. Lett. 2006; 8: 4767
    • 13i Dilman AD. Belyakov PA. Struchkova MI. Arkhipov DE. Korlyukov AA. Tartakovsky VA. J. Org. Chem. 2010; 75: 5367
    • 13j Ye C. Shreeve JM. J. Org. Chem. 2004; 69: 8561
    • 13k Leung JC. T. Chatalova-Sazepin C. West JG. Rueda-Becerril M. Paquin JF. Sammis GM. Angew. Chem. Int. Ed. 2012; 51: 10804
    • 14a Zhang J. Wu DG. Chen XL. Liu YK. Xu ZY. J. Org. Chem. 2014; 79: 4799
    • 14b Zhang J. Wang H. Ren SB. Zhang W. Liu YK. Org. Lett. 2015; 17: 2920
    • 14c Zhang J. Zhang HF. Shi DD. Jin HW. Liu YK. Eur. J. Org. Chem. 2016; 5545
  • 15 Guo ZC. Jin C. Zhou JD. Su WK. RSC Adv. 2015; 5: 7232
    • 17a Chatgilialoglu C. Crich D. Komatsu M. Ryu I. Chem. Rev. 1999; 99: 1991
    • 17b Tsujimoto S. Sakaguchi S. Ishii Y. Tetrahedron Lett. 2003; 44: 5601
    • 17c DiLabio GA. Ingold KU. Roydhouse MD. Walton JC. Org. Lett. 2004; 6: 4319
    • 17d Conte M. Miyamura H. Kobayashi S. Chechik V. Chem. Commun. 2010; 46: 145
    • 17e Liu Z. Zhang J. Chen S. Shi E. Xu Y. Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
  • 18 General Experimental Procedure to Synthesize 1,3-Dioxoisoindolin-2-yl 2-fluorobenzoate (3b) A flame-dried flask was charged with Cu (10 mol%) and Selectfluor (10 mol%) in H2O (8 mL) was added and stirred at r.t. for 5 min, then 2-fluorobenzaldehyde (1, 1.2 mmol), NHPI (2, 1 mmol), PhI(OAc)2 (1.2 mmol) were added, the resulting mixture was whisked for a further 15 min in water at r.t. After the reaction was finished (monitored by TLC), CH2Cl2 (10 mL) was added, then the organic layer was separated and dried over Na2SO4. The solvent was removed under vacuum. The crude product was purified by column chromatography on silica gel (n-hexane–EtOAc, 10:1) to afford the corresponding product 3b in 75% yield (214 mg) as white solid; mp 170–172 °C. 1H NMR (500 MHz, CDCl3): δ = 8.16–8.13 (m, 1 H), 7.95–7.91 (m, 2 H), 7.84–7.81 (m, 2 H), 7.12–7.67 (m, 1 H), 7.33–7.31 (m, 1 H), 7.28–7.24 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 162.5 (1 J C–F = 264.6 Hz), 161.9, 160.2 (4 J C–F = 5.0 Hz), 136.7 (3 J C–F = 10.1 Hz), 134.9, 132.7, 128.9, 124.4 (4 J C–F = 3.8 Hz), 124.0, 117.4 (2 J C–F = 21.4 Hz), 113.9 (3 J C–F = 10.0 Hz).