Synlett 2017; 28(08): 951-956
DOI: 10.1055/s-0036-1588696
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Catalyzed Three-Component [3+2] Cycloaddition Reaction Using Pentafulvene as 2π Component: An Easy Way to Construct Pentaleno(1,2-b)indoles

P. V. Santhini
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
,
S. Sarath Chand
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
,
Jubi John
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
,
R. Luxmi Varma
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
,
Florian Jaroschik
c   Institut de Chimie Moléculaire de Reims and Université de Reims, BP 1039, 51687 Reims Cedex, France
,
K. V. Radhakrishnan*
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
› Author Affiliations
Further Information

Publication History

Received: 14 October 2016

Accepted after revision: 09 January 2016

Publication Date:
03 February 2017 (online)


Abstract

A facile route toward the synthesis of pentaleno(1,2-b)indoles via multicomponent reaction of indole, aldehyde, and pentafulvene is realized. The reaction proceeds through Lewis acid catalyzed [3+2] cycloaddition of in situ generated indolylmethanol and pentafulvene. This methodology provides an easy access to biologically relevant indole derivatives.

Supporting Information

 
  • References and Notes

    • 1a Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 1b Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: 215
    • 1c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1d Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 1e Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1f Somei M, Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 2a Cheng KF, Wong TT, Chan KP, Kong YC. Eur. J. Med. Chem. 1992; 27: 121
    • 2b Kong Y.-C, Cheng K.-F, Cambie RC, Waterman PG. J. Chem. Soc., Chem. Commun. 1986; 47
    • 2c Ngantchou I, Nyasse B, Denier C, Blonski C, Hannaert V, Schneider B. Bioorg. Med. Chem. Lett. 2010; 20: 3495
    • 2d Hocquemiller R, Dubois G, Leboeuf M, Cave M, Kunesch N. Tetrahedron Lett. 1981; 22: 5057
    • 2e Kim H, Lantvit D, Hwang CH, David JK, Swanson SM, Franzblau SG, Orjala J. Bioorg. Med. Chem. 2012; 20: 5290
    • 2f Park A, Moore RE, Patterson GM. L. Tetrahedron Lett. 1922; 20: 3257
    • 2g Sturino CF, O’Neill G, Lachance N, Boyd M, Berthelette C, Labelle M, Li L, Roy B, Scheigetz J, Tsou N. J. Med. Chem. 2007; 50: 794
    • 3a Dange NS, Hong B.-C, Leeb GH. RSC Adv. 2014; 4: 59706
    • 3b Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS. J. Am. Chem. Soc. 2008; 130: 17938
    • 4a Zi W, Wu H, Toste FD. J. Am. Chem. Soc. 2015; 137: 3225
    • 4b Dhiman S, Ramasastry SS. V. Chem. Commun. 2015; 51: 557
    • 4c Ferrer C, Amijs CH. M, Echavarren AM, Xiong H, Xu H, Liao S, Xie Z, Tang Y. J. Am. Chem. Soc. 2013; 135: 7851
    • 4d Xia G, Han X, Lu X. Org. Lett. 2014; 16: 2058
    • 4e Ferreira EM, Stoltz BM. J. Am. Chem. Soc. 2003; 125: 9578
    • 4f Saito K, Sogou H, Suga T, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 689
    • 4g Lian Y, Davies HM. L. J. Am. Chem. Soc. 2010; 132: 440
    • 4h Tseng N.-W, Lautens M. J. Org. Chem. 2009; 74: 1809
    • 5a Yokosaka T, Nakayama H, Nemoto T, Hamada Y. Org. Lett. 2013; 15: 2979
    • 5b Barluenga J, Tudela E, Ballesteros A, Tomás M. J. Am. Chem. Soc. 2009; 131: 2096
    • 5c Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 6802
    • 5d Venkatesh C, Singh PP, Ila H, Junjappa H. Eur. J. Org. Chem. 2006; 5378
    • 5e Li H, Hughes RP, Wu J. J. Am. Chem. Soc. 2014; 136: 6288
    • 6a Harrison C.-A, Leineweber R, Moody CJ, Williams MJ. J. Chem. Soc., Perkin Trans. 1 1995; 1127
    • 6b McNulty J, Mcleod D. Synlett 2011; 717
    • 7a Shiri M. Chem. Rev. 2012; 112: 3508
    • 7b Cioc RC, Ruijter E, Orru RA. Green Chem. 2014; 16: 2958
    • 7c Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
    • 7d Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 7e Oikawa Y, Hirasawa H, Yonemitsu O. Tetrahedron Lett. 1978; 20: 1759
    • 7f Oikawa Y, Hirasawa H, Yonemitsu O. Chem. Pharm. Bull. 1982; 30: 3092
    • 7g Palframan MJ, Pattenden G. Chem. Commun. 2014; 50: 7223 ; and references cited therein
    • 7h Lebee C, Kataja AO, Blanchard F, Masson G. Chem. Eur. J. 2015; 21: 8399
    • 7i Hao WJ, Wang SY, Ji SJ. ACS Catal. 2013; 3: 2501
    • 7j Harmata M. Chem. Commun. 2010; 46: 8904
    • 7k Gong W, Liu Y, Zhang J, Jiao Y, Li XJ. Chem. Asian J. 2013; 8: 546
    • 7l Cao K.-S, Bian HX, Zheng W.-H. Org. Biomol. Chem. 2015; 13: 6449
    • 8a Han X, Li H, Hughes RP, Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
    • 8b Winne JM, Catak S, Waroquier M, Speybroeck VV. Angew. Chem. Int. Ed. 2011; 50: 11990
    • 8c Laplace DR, Verbraeken B, Hecke KV, Winne JM. Chem. Eur. J. 2014; 20: 253
    • 9a Sarath Chand S, Jijy E, Prakash P, Szymoniak J, Preethanuj P, Dhanya BP, Radhakrishnan KV. Org. Lett. 2013; 15: 3338
    • 9b Sarath Chand S, Saranya S, Preethanuj P, Dhanya BP, Jijy E, Prakash P, Sasidhar BS, Szymoniak J, Santhini PV, Radhakrishnan KV. Org. Biomol. Chem. 2014; 12: 3045
    • 9c Sarath Chand S, Sasidhar BS, Prakash P, Sasikumar P, Preethanuj P, Jaroschik F, Harakat D, Vasse J.-L, Radhakrishnan KV. RSC Adv. 2015; 5: 38075
    • 10a Little RD, Carroll GL. Tetrahedron Lett. 1981; 22: 4389
    • 10b Little RD, Miller GW, Venegas MG, Carroll GL, Bukhari A, Patton L, Stone K. Tetrahedron 1981; 33: 4371
    • 10c Lei B, Fallis AG. J. Am. Chem. Soc. 1990; 112: 4609
    • 10d Goering BK, Li J, Ganem B. Tetrahedron Lett. 1995; 36: 8905
    • 10e Ebner C, Carreira EM. Angew. Chem. Int. Ed. 2015; 54: 11227
    • 11a Arai K. Synthesis 1989; 501
    • 11b Nair V, Anilkumar G, Radhakrishnan KV, Nandakumar MV, Kumar S. Tetrahedron 1997; 53: 15903
    • 11c Nair V, Kumar S, Williard PG. Tetrahedron Lett. 1995; 36: 1605
    • 11d Nair V, Anilkumar G, Radhakrishnan KV, Sheela KC, Rath NP. Tetrahedron 1997; 53: 17361
    • 11e Nair V, Nandakumar MV, Maliakal D, Mathen JS, Rath NP. Tetrahedron 2000; 56: 8001
    • 11f Nair V, Mathew B, Menon RS, Mathew S, Vairamani M, Prabhakar S. Tetrahedron 2002; 58: 3235
    • 11g Hong B.-C, Shri Y.-J, Liao J.-H. Org. Lett. 2002; 4: 663
    • 11h Boger DL, Huter O, Mbiya K, Zhang M. J. Am. Chem. Soc. 1995; 117: 11839
    • 12a Lonergan DG, Deslongchamps G. Tetrahedron 1998; 54: 14041
    • 12b Warrener RN, Butler DN. Aldrichimica Acta 1997; 30: 119
    • 12c Radhakrishnan KV, Nandakumar MV, Rath NP. Synlett 1997; 767
    • 12d Nzabamwita G, Kolani B, Jousseaume B. Tetrahedron Lett. 1989; 30: 2207
    • 12e Manikandan S, Shanmugasundaram M, Raghunathan R. Tetrahedron 2002; 58: 597
    • 12f Bhojgude SS, Kaicharla T, Bhunia A, Biju AT. Org. Lett. 2012; 14: 4098
    • 13a Dunn LC, Chang Y.-M, Houk KN. J. Am. Chem. Soc. 1976; 98: 7095
    • 13b Yujiro H, Hiroaki G, Masakazu H, Kuppusamy S, Indresh K, Hayato I, Kohzo K, Hiroharu Y, Seiji T, Tadafumi U. J. Am. Chem. Soc. 2011; 133: 20175
    • 13c Radhakrishnan KV, Krishnan KS, Bhadbhade MM, Bhosekar GV. Tetrahedron Lett. 2005; 46: 4785
    • 13d Krishnan KS, Sajisha VS, Anas S, Suresh CH, Bhadbhade MM, Bhosekar GV, Radhakrishnan KV. Tetrahedron 2006; 62: 5952
    • 13e Hong B.-C, Sun H.-I, Chen Z.-Y. Chem. Commun 1999; 2125
    • 13f Hong B.-C, Shr Y.-J, Wu J.-L, Gupta AK, Lin KJ. Org. Lett. 2002; 4: 2249
    • 14a Joseph J, Jaroschik F, Radhakrishnan KV, Vasse J.-L, Szymoniak J. Chem. Commun. 2013; 49: 4549
    • 14b Joseph J, Jaroschik F, Harakat D, Radhakrishnan KV, Vasse J.-L, Szymoniak J. Chem. Eur. J. 2014; 20: 5433
    • 14c Tamke S, Daniliuc C.-G, Paradies J. Org. Biomol. Chem. 2014; 12: 9139
    • 14d Barluenga J, Martinez S, Suarez-Sobrino AL, Tomas M. J. Am. Chem. Soc. 2002; 124: 5948
  • 15 Sarath Chand S, Greeshma G, Santhini PV, Preethanuj P, Jubi J, Harakat D, Jaroschik F, Radhakrishnan KV. Org. Lett. 2016; 18: 9646
  • 16 Typical Experimental Procedure for 4aa A mixture of indole 1a (50 mg, 0.427 mmol), pentafulvene 3a (147 mg, 0.640 mmol), aldehyde 2a (70 mg, 0.640 mmol), and Sn(OTf)2 (4 mg, 0.008 mmol) were weighed in to a reaction tube and dry MeCN (2 mL) was added and allowed to stir at r.t. for 2 h. The solvent was evaporated in vacuo and the residue on silica gel (100–200 mesh) column chromatography with mixture of hexane–EtOAc yielded the products.
  • 17 Spectral Data of Compound 4aa Yield 115 mg, 62%; off-white solid, mp 155–160 °C; Rf = 0.43 (hexane–EtOAc = 9:1). IR (neat) ν max = 3402, 3056, 3026, 2923, 1710, 1603, 1489, 1449, 1361, 1224, 1060, 1028, 750, 701 cm–1. 1H NMR (500 MHz, CDCl3, TMS): δ = 7.84 (s, 1 H), 7.27–7.7.25 (m, 3 H), 7.23–7.21 (m, 1 H), 7.19–7.17 (m, 2 H), 7.14–7.13 (m, 5 H), 7.05–7.01 (m, 2 H), 7.00–6.97 (m, 3 H), 6.89 (t, J = 8 Hz, 1 H), 6.50–6.48 (m, 2 H), 6.44–6.43 (m, 1 H), 6.33 (d, J = 8.5 Hz, 1 H), 4.74–4.66 (m, 2 H), 4.20 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 148.0, 146.3, 143.6, 143.4, 142.9, 141.4, 136.8, 135.1, 134.8, 130.2, 129.7, 128.6, 127.9, 127.7, 126.9, 126.8, 126.7, 125.3, 124.3, 122.3, 121.1, 119.7, 118.9, 111.4, 61.5, 51.6, 50.8. ESI-HRMS: m/z calcd for C23H25N [M + H]+: 436.20652; found: 436.20610.