Synlett 2016; 27(20): 2747-2755
DOI: 10.1055/s-0036-1588637
synpacts
© Georg Thieme Verlag Stuttgart · New York

Metal-Catalyzed Decarboxylative Fluoroalkylation Reactions

Brett R. Ambler
Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA   Email: raaltman@ku.edu
,
Ming-Hsiu Yang
Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA   Email: raaltman@ku.edu
,
Ryan A. Altman*
Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA   Email: raaltman@ku.edu
› Author Affiliations
Further Information

Publication History

Received: 22 August 2016

Accepted after revision: 06 October 2016

Publication Date:
25 October 2016 (online)


Abstract

Metal-catalyzed decarboxylative fluoroalkylation reactions enable the conversion of simple O-based substrates into biologically relevant fluorinated analogues. Herein, we present decarboxylative methods that facilitate the synthesis of trifluoromethyl- and difluoroketone-containing products. We highlight key mechanistic aspects that are critical for efficient catalysis, and that inspired our thinking while developing the reactions.

1 Introduction

2 Copper-Catalyzed Decarboxylative Trifluoromethylation Reactions

2.1 Net Trifluoromethylation of Alcohols

2.2 Mechanism of Decarboxylation Impacts Functional-Group Tolerance

2.3 Allylic Trifluoromethylation Enabled by Activation Protocol

2.4 Generation of Iodide Intermediate Required for Benzylic Trifluoromethylation

2.5 Ligand-Controlled Regiodivergent Trifluoromethylation of Propargylic Electrophiles

2.6 Summary

3 Palladium-Catalyzed Decarboxylative Alkylation of α,α-Difluoroketone Enolates

3.1 Convergent Routes towards α,α-Difluoroketones

3.2 Palladium-Catalyzed Decarboxylative Benzylation of α,α-Difluoroketone Enolates

3.3 Palladium-Catalyzed Decarboxylative Allylation of α,α-Difluoroketone Enolates

3.4 Summary

 
  • References

    • 1a Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; New York: 2000
    • 1b Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications. Wiley-VCH; Weinheim: 2004
    • 1c Bégué JP, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine. Wiley-VCH; Weinheim: 2008
    • 1d Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
    • 1e Gouverneur V, Muller K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Imperial College Press; London: 2012
    • 2a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2b Liu T, Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 2c Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2012; 52: 8214
    • 2d Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 2e Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 3 Qiao Y, Zhu L, Ambler BR, Altman RA. Curr. Top. Med. Chem. 2014; 14: 966
    • 4a Baudoin O. Angew. Chem. Int. Ed. 2007; 46: 1373
    • 4b Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
    • 4c Rodriguez N, Goossen L. J. Chem. Soc. Rev. 2011; 40: 5030
    • 4d Behenna DC, Stoltz BM. Top. Organomet. Chem. 2013; 44: 281
    • 4e Arseniyadis S, Fournier J, Thangevelu S, Lozano O, Prevost S, Archambeau A, Menozzi C, Cossy J. Synlett 2013; 24: 2350
    • 5a Kobayashi Y, Yamamoto K, Kumadaki I. Tetrahedron Lett. 1979; 20: 4071
    • 5b Bouillon J.-P, Maliverney C, Merenyi R, Viehe HG. J. Chem. Soc., Perkin Trans. 1 1991; 2147
    • 5c Tan L, Chen C.-y, Larsen RD, Verhoeven TR, Reider PJ. Tetrahedron Lett. 1998; 39: 3961
    • 5d Larsson JM, Pathipati SR, Szabo KJ. J. Org. Chem. 2013; 78: 7330
    • 5e Miyake Y, Ota S.-i, Nishibayashi Y. Chem. Eur. J. 2012; 18: 13255
    • 5f Miyake Y, Ota S.-i, Shibata M, Nakajima K, Nishibayashi Y. Org. Biomol. Chem. 2014; 12: 5594
    • 6a Burton DJ, Hartgraves GA, Hsu J. Tetrahedron Lett. 1990; 31: 3699
    • 6b Bouillon J.-P, Maliverney C, Merényi R, Viehe HG. J. Chem. Soc., Perkin Trans. 1 1991; 2147
    • 6c Kawai H, Furukawa T, Nomura Y, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 3596
    • 6d Zhao TS. N, Szabo KJ. Org. Lett. 2012; 14: 3966
    • 6e Miyake Y, Ota S.-i, Shibata M, Nakajima K, Nishibayashi Y. Chem. Commun. 2013; 49: 7809
    • 6f Jiang X, Qing F.-L. Beilstein J. Org. Chem. 2013; 9: 2862
    • 6g Ji Y.-L, Kong J.-J, Lin J.-H, Xiao J.-C, Gu Y.-C. Org. Biomol. Chem. 2014; 12: 2903
    • 7a Chen Q.-Y, Wu S.-W. J. Chem. Soc., Chem. Commun. 1989; 705
    • 7b Su D.-B, Duan J.-X, Chen Q.-Y. Tetrahedron Lett. 1991; 32: 7689
    • 7c Duan J.-X, Su D.-B, Chen Q.-J. J. Fluorine Chem. 1993; 61: 279
    • 7d Chen Q.-Y, Duan J.-X. J. Chem. Soc., Chem. Commun. 1993; 1389
    • 7e Duan J.-X, Chen Q.-Y. J. Chem. Soc., Perkin Trans. 1 1994; 725
    • 7f Duan J.-X, Su D.-B, Wu J.-P, Chen Q.-Y. J. Fluorine Chem. 1994; 66: 167
    • 7g Chen Q.-Y. J. Fluorine Chem. 1995; 72: 241
    • 9a England DC, Krespan CG. J. Org. Chem. 1968; 33: 816
    • 9b Drivon G, Gillet J.-P, Ruppin C. US 6906219, 2005
    • 10a Prakash GK. S, Yudin AK. Chem. Rev. 1997; 97: 757
    • 10b Zanardi A, Novikov MA, Martin E, Benet Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
    • 10c Lishchynskyi A, Novikov MA, Martin E, Escudero-Adán EC, Novák P, Grushin VV. J. Org. Chem. 2013; 78: 11126
    • 10d Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
  • 11 Walter W, Voss J In The Chemistry of Amides. Patai S. Interscience; London: 1970
  • 12 Symons EA, Clermont MJ. J. Am. Chem. Soc. 1981; 103: 3127
  • 13 McClinton MA, McClinton DA. Tetrahedron 1992; 48: 6555
    • 14a Dreyer GB, Metcalf BW. Tetrahedron Lett. 1988; 29: 6885
    • 14b Hamer RL, Freed B, Allen RC. US 5006563, 1991
    • 14c Han C, Salyer AE, Kim EH, Jiang X, Jarrard RE, Powers MS, Kirchhoff AM, Salvador TK, Chester JA, Hockerman GH, Colby DA. J. Med. Chem. 2013; 56: 2456
    • 14d Banville J, Remillard R, Balasubramanian N, Bouthillier G, Martel A. US 20020037875, 2002
    • 15a Baudoux J, Cahard D. Org. React. 2007; 69: 347
    • 15b Differding E, Ruegg GM, Lang RW. Tetrahedron Lett. 1991; 32: 1779
    • 15c Peng W, Shreeve JM. J. Org. Chem. 2005; 70: 5760
    • 15d Pravst I, Zupan M, Stavber S. Synthesis 2005; 3140
    • 16a Biju P. Synth. Commun. 2008; 38: 1940
    • 16b Miwatashi S, Suzuki H, Okawa T, Miyamoto Y, Yamasaki K, Hitomi Y, Hirata Y, Shibuya A. WO 2013122028, 2013
    • 17a Brigaud T, Doussot P, Portella C. J. Chem. Soc., Chem. Commun. 1994; 2117
    • 17b Lefebvre O, Brigaud T, Portella C. Tetrahedron 1999; 55: 7233
    • 17c Kobayashi S, Tanaka H, Amii H, Uneyama K. Tetrahedron 2003; 59: 1547
    • 18a Guo Y, Shreeve JM. Chem. Commun. 2007; 34: 3583
    • 18b Guo C, Wang R.-W, Qing F.-L. J. Fluorine Chem. 2012; 143: 135
    • 18c Ge S, Chaladaj W, Hartwig J. J. Am. Chem. Soc. 2014; 136: 4149
    • 18d Andersen TL, Frederiksen MW, Domino K, Skrydstrup T. Angew. Chem. Int. Ed. 2016; 55: 10396
    • 18e Zhao H.-Y, Feng Z, Luo Z, Zhang X. Angew. Chem. Int. Ed. 2016; 55: 10401
    • 19a Stolz D, Kazmaier U. Metal Enolates as Synthons in Organic Chemistry. In Chemistry of Metal Enolates. Zabicky J. John Wiley and Sons; London: 2009. Chap. 7, 355-409
    • 19b Stoltz BM, Bennett NB, Duquette DC, Goldberg AF. G, Liu Y, Loewinger MB, Reeve CM In Comprehensive Organic Synthesis II. Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 2nd ed., Vol 3, 1-55
    • 20a Yamana M, Ishihara T, Ando T. Tetrahedron Lett. 1983; 24: 507
    • 20b Kuroboshi M, Ishihara T. Bull. Chem. Soc. Jpn. 1990; 63: 428
    • 20c Liu Y.-L, Zhou J. Chem. Commun. 2012; 48: 1919
    • 21a Uneyama K. Fundamentals in Organic Fluorine Chemistry: Organofluorine Chemistry. Blackwell; Oxford: 2006. Chap. 1, 10
    • 21b Qian C.-P, Nakai T. J. Am. Chem. Soc. 1990; 112: 4602
  • 22 Qian C.-P, Nakai T. Tetrahedron Lett. 1988; 29: 4119
  • 23 Trost BM, Czabaniuk LC. Angew. Chem. Int. Ed. 2014; 53: 2826
    • 24a Legros JY, Toffano M, Fiaud JC. Tetrahedron 1995; 51: 3235
    • 24b Torregrosa RP, Ariyarathna Y, Chattopadhyay K, Tunge JA. J. Am. Chem. Soc. 2010; 132: 9280
    • 25a Zheng W.-H, Zheng B.-H, Zhang Y, Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
    • 25b Chen P.-P, Peng Q, Lei B.-L, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 14180
    • 26a Oliver S, Evans PA. Synthesis 2013; 45: 3179
    • 26b Tsuji J, Yamada T, Minami I, Yuhara M, Nisar M, Shimizu I. J. Org. Chem. 1987; 52: 2988
    • 27a Prétôt R, Pfaltz A. Angew. Chem. Int. Ed. 1998; 37: 323
    • 27b Hayashi T, Kawatsura M, Uozumi Y. Chem. Commun. 1997; 561
    • 28a Méndez M, Cuerva JM, Gómez-Bengoa E, Cárdenas DJ, Echavarren AM. Chem. Eur. J. 2002; 8: 3620
    • 28b Keith JA, Behenna DC, Mohr JT, Ma S, Marinescu SC, Oxgaard J, Stoltz BM, Goddard WA. III. J. Am. Chem. Soc. 2007; 129: 11876
    • 28c Keith JA, Behenna DC, Sherden N, Mohr JT, Ma S, Marinescu SC, Nielsen RJ, Oxgaard J, Stoltz BM. J. Am. Chem. Soc. 2012; 134: 19050
    • 29a Cresson P. Bull. Soc. Chim. Fr. 1964; 2618
    • 29b Metcalf BW, Jarvi ET, Burkhart JP. Tetrahedron Lett. 1985; 26: 2861