Synlett 2017; 28(02): 201-206
DOI: 10.1055/s-0036-1588624
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Two-Step Multifunctionalization of Substituted 2-Hydro­xyglycopyranosides

Antonio Franconetti*
a   Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012 Sevilla, Spain   Email: afranconetti@us.es   Email: fcabrera@us.es
,
Eleuterio Álvarez
b   Instituto de Investigaciones Químicas, C.S.I.C.-Universidad de Sevilla, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
,
Francisca Cabrera-Escribano*
a   Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012 Sevilla, Spain   Email: afranconetti@us.es   Email: fcabrera@us.es
› Author Affiliations
Further Information

Publication History

Received: 11 July 2016

Accepted after revision: 20 September 2016

Publication Date:
11 October 2016 (online)


Abstract

A straightforward route to diversely functionalized glycopyranosides is reported. 2,3-Enopyranosides, 2- and/or 3-azido-, 2-halopyranosides, and a hex-3-ulose, among other α- and β-glycopyranosides are easily obtained in good to excellent yields from 2-hydroxyglycopyranosides by means of a two-step process involving trifluoromethanesulfonation and subsequent treatment with the appropriate nucleophilic agent.

 
  • References and Notes

    • 1a Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Chem. Eur. J. 2015; 21: 10616
    • 1b Galan MC, Benito-Alifonso D, Watt GM. Org. Biol. Chem. 2011; 9: 3598
  • 2 Xu C, Ng DT. W. Nat. Rev. Mol. Cell Biol. 2015; 16: 742
    • 3a Solis D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana KJr, Gabius HJ. Biochim. Biophys. Acta 2015; 1850: 186
    • 3b Cabezas Y, Legentil L, Robert-Gangneux F, Daligault F, Belaz S, Nugier-Chauvin C, Tranchimand S, Tellier C, Gangneux J.-P, Ferrières V. Org. Biomol. Chem. 2015; 13: 8393
  • 4 Jatunov S, Franconetti A, Prado-Gotor R, Heras A, Mengíbar M, Cabrera-Escribano F. Carbohydr. Polym. 2015; 123: 288
  • 5 Franconetti A, Jatunov S, Borrachero P, Gómez-Guillén M, Cabrera-Escribano F. Org. Biomol. Chem. 2013; 11: 676 ; and references cited therein
  • 6 Guerra A, Brea RJ, Amorín M, Castedo L, Granja JR. Org. Biomol. Chem. 2012; 10: 8762
  • 7 Pomerantz WC, Yuwono VM, Drake R, Hartgerink JD, Abbott NL, Gellman SH. J. Am. Chem. Soc. 2011; 133: 13604
    • 8a Vera-Ayoso Y, Borrachero P, Cabrera-Escribano F, Carmona AT, Gómez-Guillén M. Tetrahedron: Asymmetry 2004; 15: 429
    • 8b Vera-Ayoso Y, Borrachero P, Cabrera-Escribano F, Gómez-Guillén M, Caner J. Synlett 2010; 21: 271
    • 8c Franconetti A, Borrachero P, Gómez-Guillén M, Cabrera-Escribano F. Synlett 2013; 24: 249
    • 9a Medina S, Henderson A, Bower J, Galan MC. Chem. Commun. 2015; 51: 8939
    • 9b Balmond EI, Benito-Alifonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC. Angew. Chem. Int. Ed. 2014; 53: 8190
    • 9c Balmond EI, Coe DM, Galan MC, Mcgarrigle E. Angew. Chem. Int. Ed. 2012; 51: 9152
  • 10 Saquib M, Husain I, Sharma S, Yadav G, Singh VK, Sharma SK, Shah P, Imran Siddiqi M, Kumar B, Lal J, Jain GK, Srivastava BS, Srivastava R, Shaw AK. Eur. J. Med. Chem. 2011; 46: 2217
    • 11a Albano EL, Horton D. J. Org. Chem. 1969; 34: 3519
    • 11b Bruni P, Conti C, Galeazzi R, Tosi G. J. Mol. Struct. 2001; 565-566: 271
  • 12 Rodríguez OM, Colinas PA, Bravo RD. Synlett 2009; 7: 1154
  • 13 Chambers DJ, Evans GR, Fairbanks AJ. Tetrahedron: Asymmetry 2005; 16: 45
  • 14 Chambers DJ, Evans GR, Fairbanks AJ. Tetrahedron: Asymmetry 2003; 14: 1767
  • 15 Cho DH, Jang DO. Tetrahedron Lett. 2005; 46: 1799
  • 16 Hanessian S, Plessas NR. Chem. Commun. 1968; 12: 706
  • 17 Kloth K, Brünjes M, Kunst E, Jöge T, Gallier F, Adibekian A, Kirschning A. Adv. Synth. Catal. 2005; 347: 1423
  • 18 Preparation and More Relevant Data of Compound 6 Compound 2 (100 mg, 0.18 mmol) was dissolved in MeCN (5 mL). Large excess of ethylenediamine (1.04 mL, 15.51 mmol) was added. The mixture was heated to 40 °C for 15 h. The solution was diluted with CH2Cl2 (20 mL). The organic layer was successively extracted with iced H2O (3 × 20 mL), sat. NaHCO3 (2 × 20 mL), dried over Na2SO4, and concentrated to afford, after column chromatography (EtOAc–hexane, 1:2), the uloside 6 in quantitative yield. Rf = 0.18 (EtOAc–hexane, 1:2). IR: νmax = 2918, 1732 (CO), 1455 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.52–7.35 (m, 5 H, Ph), 5.59 (1 H, s, H-7), 5.14 (1 H, d, J 1,2 = 4.7 Hz, H-1), 4.38 (1 H, dd, J 6eq,5 = 4.8 Hz, J 6eq,6ax = 10.3 Hz, H-6eq), 4.31 (1 H, dd, J 4,2′ = 0.7 Hz, J 4,5 = 9.9 Hz, H-4), 4.16 (1 H, dt, J 5,6eq = 4.9 Hz, J 5,6ax = 10.1 Hz, H-5), 3.92 (1 H, t, J 6ax,6eq = J 6ax,5 =10.2 Hz, H-6ax), 3.87 (3 H, s, OMe), 2.84 (1 H, ddd, J 2′,1 = 5.0 Hz, J 2′,2 = 14.6, J 2′,4 = 1.0 Hz, H-2′), 2.68 (1 H, d, J 2,2′ = 14.6 Hz, H-2). 13C NMR (125.7 MHz, CDCl3): δ = 197.5 (CO), 136.7, 129.5, 128.4, 126.6 (Ph), 102.4 (C-7), 100.8 (C-1), 83.3 (C-4), 69.7 (C-6), 65.3 (C-5), 55.1 (OCH3), 46.7 (C-2). HRMS (CI): m/z calcd for C14H17O5 [M + H]+: 265.1076; found: 265.1071.
  • 19 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01. Gaussian, Inc; Wallingford CT: 2009
  • 20 Fleet GW, Gough MJ, Shing TK. M. Tetrahedron Lett. 1984; 25: 4029
  • 21 Walvoort MT. C, Lodder G, Overkleeft HS, Codée JD. C, van der Marel GA. J. Org. Chem. 2010; 75: 7990
  • 22 Preparation of Compound 12 To a solution of compound 9 (109 mg, 0.22 mmol) in MeCN (10 mL) was added Bu4NBr (310 mg, 0.65 mmol) at r.t. The mixture was heated to reflux for 14 h, and then the solvent was removed under reduced pressure. The residue was purified by column chromatography (EtOAc–hexane, 3:1) to afford compound 12 (64 mg, 84%) as a syrup. Rf = 0.69 (EtOAc–hexane, 3:1). IR: νmax = 3412 (OH), 2929, 2358, 740 (CBr) cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.40–7.32 (5 H, m, Ph), 4.98 (1 H, d, J 1,2= 1.2 Hz, H-1), 4.71 and 4.46 (2 H, 2d, J H,H′ = 11.3 Hz, CH2Ph), 4.38 (1 H, dd, J 2,1 = 1.3 Hz, J 2,3 = 3.8 Hz, H-2), 3.99 (1 H, t, J 4,3 = J4,5 = 9.4 Hz, H-4), 3.85 (2 H, dt, J 6eq,6ax = J 6ax,5 = 11.8 Hz, J 6eq,5 = 3.6 Hz, H-6eq and H-6ax), 3.75 (1 H, dd, J 3,2 = 3.8 Hz, J 3,4 = 9.0 Hz, H-3), 3.70 (1 H, m, H-5), 3.38 (3 H, s, OMe). 13C NMR (125.7 MHz, CDCl3): δ = 137.4, 128.7, 128.3, 128.2 (Ph), 101.6 (C-1), 76.8 (C-3), 72.5 (CH2Ph), 71.0 (C-5), 67.1 (C-4), 62.7 (C-6), 54.4 (OCH3), 50.1 (C-2). HRMS (CI): m/z calcd for calcd for C14H19O5Br79 and C14H19O5Br81 [M]+: 346.0416 and 348.0395; found: 346.0413 and 348.0397, respectively.
  • 23 Vatèle J.-M, Hanessian S. Tetrahedron 1996; 52: 10557
  • 24 Vera-Ayoso Y, Borrachero P, Cabrera-Escribano F, Gómez-Guillén M. Tetrahedron: Asymmetry 2005; 16: 889
  • 25 Cumpstey I, Ramstadius C, Akhtar T, Goldstein IJ, Winter HC. Eur. J. Org. Chem. 2010; 10: 1951
  • 26 Luxen A, Satyamurthy N, Vida GT, Barrio JR. Int. J. Radiat. Appl. Instrum. A 1986; 37: 409
  • 27 Representative Analytical Data Compound 14: Rf = 0.46 (EtOAc–hexane, 1:4). In agreement with literature data.26 1H NMR (500 MHz, CDCl3): δ = 7.51–7.29 (10 H, m, Ph), 5.67 (1 H, s, H-7), 4.87 and 4.78 (2 H, 2d, J H,H′ = 12.3 Hz, CH2Ph), 4.79 (1 H, dd, J 2,F = 50.4 Hz, J 2,3 = 2.5 Hz, H-2), 4.42 (1 H, d, J 1,F = 18.9 Hz, H-1), 4.36 (1 H, dd, J 6eq,5 = 5.0 Hz, J 6eq,6ax = 10.5 Hz, H-6eq), 4.11 (1 H, dt, J 4,F = 1.8 Hz, J 4,3 = J 4,5 = 9.8 Hz, H-4), 3.91 (1 H, t, J 6ax,6eq = J 6ax,5 = 10.3 Hz, H-6ax), 3.67 (1 H, ddd, J 3,F = 26.4 Hz, J 3,2 = 2.5 Hz, J 3,4 = 9.9 Hz, H-3), 3.57 (3 H, s, OMe), 3.39 (1H, dt, J 5,6eq = 4.9 Hz, J 5,6ax = 9.6 Hz, H-5). 13C NMR (125.7 MHz, CDCl3): δ = 134.6, 129.9, 129.2, 128.9, 128.6, 128.4, 128.1, 126.2 (Ph), 101,8 (C-7), 101.6 (J 1,F = 16 Hz, C-1), 86.2 (J 2,F = 188.7 Hz, C-2), 78.5 (C-4), 75.8 (J 3,F = 25.7 Hz, C-3), 71.7 (CH2Ph), 68.7 (C-6), 67.3 (C-5), 57.6 (OCH3), 50.1 (C-2). HRMS (CI): m/z calcd for C21H23O5F [M]+: 374.1530; found: 374.1527. Compound 15: Rf = 0.67 (EtOAc–hexane, 1:4). 1H NMR (500 MHz, CDCl3): δ = 7.49–7.34 (10 H, m, Ph), 5.60 (1 H, s, H-7), 5.29 (1 H, dd, J 1,F = 49.3, J 1,2 = 0.8 Hz, H-1), 4.89 and 4.75 (2 H, 2 d, J H,H′ = 12.4 Hz, CH2Ph), 4.36 (1 H, dd, J 6eq,5 = 5.0 Hz, J 6eq,6ax = 10.5 Hz, H-6eq), 4.16 (1 H, t, J 4,3 = J 4,5 = 9.6 Hz, H-4), 3.93 (1 H, t, J 6ax,6eq = J 6ax,5 = 10.3 Hz, H-6ax), 3.76 (1 H, m, H-2), 3.67 (4 H, s and m, OMe and H-3, respectively), 3.39 (1 H, dt, J 5,6eq = 4.9 Hz, J 5,6ax = 9.6 Hz, H-5). Compound 18: Rf = 0.47 (EtOAc–hexane, 3:1). IR: νmax = 2114 (N3), 1375, 1141 (SO2), 974 (CF) cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.49–7.27 (5 H, m, Ph), 5.58 (1 H, s, H-7), 4.90 (1 H, d, J 1,2 = 4.1 Hz, H-1), 4.86 (1 H, dd, J 2,3 = J 2,1 = 4.1 Hz, H-2), 4.47 (1 H, dd, J 3,4 = 3.5 Hz, H-3), 4.37 (1 H, dd, J 6ax,6eq = 10.3 Hz, J 6eq,5 = 5.2 Hz, H-6eq), 4.25 (1 H, ddd, J 4,5 = J 5,6ax = 9.9 Hz, H-5), 3.78 (1 H, dd, J 4,3 = 3.5 Hz, J 4,5 = 9.9 Hz, H-4), 3.74 (1 H, dd, J 6ax,6eq = 10.3 Hz, J 6ax,5 = 9.9 Hz, H-6ax), 3.51 (3 H, s, OMe). 13C NMR (125.7 MHz, CDCl3): δ = 136.5–126.3 (Ph), 118.5 (q, J C,F = 319.7, CF3), 102.2 (C-7), 97.2 (C-1), 78.3 (C-2), 77.5 (C-4), 68.8 (C-6), 59.4 (C-3), 58.1 (C-5), 56.8 (OCH3). HRMS (CI): m/z calcd for C15H17F3N3O7S [M + H]+: 440.0739; found: 440.0748. Compound 19: Rf = 0.47 (EtOAc–hexane, 1:4). IR: νmax = 2116 (N3), 1651 (C=C) cm–1. 1H NMR (500 MHz, acetone-d 6): δ = 7.51–7.34 (5 H, m, Ph), 5.77 (1 H, s, H-7), 5.31 (1 H, dd, J 2,1 = 3.0 Hz, J 2,4 = 2.0 Hz, H-2), 5.03 (1 H, dd, J 1,2 = 3.0 Hz, J 1,4 = 1.0 Hz, H-1), 4.58–4.55 (1 H, m, H-5), 4.29 (1 H, dd, J 6eq,6ax = 8.7 Hz, J 6eq,5 = 3.2 Hz, H-6eq), 3.96–3.89 (2 H, m, H-4 and H-6ax), 3.39 (3 H, s, OMe). 13C NMR (125.7 MHz, acetone-d 6): δ = 138.8 (C-3), 138.5-127.0 (Ph), 111.9 (C-2), 102.6 (C-7), 97.3 (C-1), 75.8 (C-5), 69.5 (C-6), 65.0 (C-4), 55.8 (OCH3). HRMS–FAB: m/z calcd for C14H15N3O4 + Na [M]+: 312.0960; found: 312.0955. Compound 22: Yield 85% (112 mg). 1H NMR (500 MHz, CDCl3): δ = 7.63–7.33 (5 H, m, Ph), 6.32 (1 H, d, J H,3 = 9.1 Hz, NH), 5.56 (1 H, s, H-7), 4.92 (1 H, m, H-3), 4.74 (1 H, d, J 1,2 = 3.5 Hz, H-1), 4.33 (1 H, dd, J 4,3 = 4.2 Hz, J 4,5 = 9.7 Hz, H-4), 3.87 (1 H, t, J 2,1 = J 2,3 = 4.0 Hz, H-2), 3.80 (1 H, m, H-5), 3.76 (1 H, t, J 6ax,6eq = J 6ax,5 = 10.1 Hz, H-6ax), 3.66 (1 H, dd, J 6eq,5 = 4.0 Hz, J 6eq,6ax = 9.4 Hz, H-6eq), 3.49 (3 H, s, OMe), 2.06 (3 H, s, COMe). Compound 24: Rf = 0.58 (EtOAc–hexane, 2:1). 1H NMR (500 MHz, CDCl3): δ = 8.21 (1 H, br s, NHAc), 7.52–7.37 (5 H, m, Ph), 5.46 (1 H, t, J 2,1 = J 2,4 = 2.3 Hz, H-2), 5.67 (1 H, s, H-7), 5.03 (1 H, dd, J 1,2 = 3.0 Hz, J 1,4 = 0.7 Hz, H-1), 4.23 (2 H, m, H-4 and H-6eq), 3.90 (1 H, dt, J 5,6eq = 4.4 Hz, J 5,6ax = 10.4 Hz, H-5), 3.84 (1 H, t, J 6ax,6eq = J 6ax,5 = 10.4 Hz, H-6ax), 3.38 (3 H, s, OMe). HRMS (CI): m/z calcd for C16H19NO5 [M]+: 305.1263; found: 305.1260.
  • 28 Baer HH, Gan Y. Carbohydr. Res. 1991; 210: 233
    • 29a Oberg CT, Noresson AL, Delaine T, Larumbe A, Tejler J, von Wachenfeldt H, Nilsson UJ. Carbohydr. Res. 2009; 344: 1282
    • 29b Dong H, Zhou Y, Pan X, Cui F, Liu W, Liu J, Ramström O. J. Org. Chem. 2012; 77: 1457
  • 30 Komarova BS, Maryasina SS, Tsvetkov YE, Nifantiev NE. Synthesis 2013; 45: 471