Synlett 2017; 28(02): 239-244
DOI: 10.1055/s-0036-1588622
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Mediated [3+2] Coupling of Masked Benzoquinones with Styrenes: Facile Synthesis of 2,3-Dihydrobenzofurans

Shivangi Sharma
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Santosh Kumar Reddy Parumala
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Rama Krishna Peddinti*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 22 July 2016

Accepted after revision: 20 September 2016

Publication Date:
11 October 2016 (online)


Abstract

We have developed an efficient, simple, mild, and rapid method for the construction of dihydrobenzofuran derivatives by the [3+2] coupling of masked o-benzoquinones with styrene derivatives triggered by boron trifluoride diethyl etherate. This new [3+2] coupling protocol proceeds smoothly to afford dihydrobenzofuran derivatives in good to high yields within one minute. The method was extended to cycloaddition of p-benzoquinone monoketal with styrenes.

Supporting Information

 
  • References and Notes

    • 1a Dictionary of Natural Products . Buckingham J. Chapman and Hall; London: 1994
    • 1b Comprehensive Natural Products Chemistry . Vols. 1, 3, and 8. Barton D, Nakanishi K, Meth-Cohn O. Elsevier Science; Oxford: 1999

      For reviews, see:
    • 2a Bertolini F, Pineschi M. Org. Prep. Proced. Int. 2009; 41: 385
    • 2b Sheppard TD. J. Chem. Res. 2011; 35: 377
    • 2c Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
    • 3a Marques MO. M, Yoshida M, Gottlieb OR. Phytochemistry 1992; 31: 4380
    • 3b Chen C.-H, Shaw C.-Y, Chen C.-C, Tsai Y.-C. J. Nat. Prod. 2002; 65: 740
    • 3c Beldjoudi N, Mambu L, Labaïed M, Grellier P, Ramanitrahasimbola D, Rasoanaivo P, Martin MT, Frappier F. J. Nat. Prod. 2003; 66: 1447
    • 3d Meng J, Jiang T, Bhatti HA, Siddiqui BS, Dixon S, Kilburn JD. Org. Biomol. Chem. 2010; 8: 107
    • 3e Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 5767
    • 3f Zhou Z.-B, Luo J.-G, Pan K, Shan S.-M, Zhang W, Kong L.-Y. Planta Med. 2013; 79: 1730
    • 4a Achenbach H, Utz W, Usubillaga A, Rodriguez HA. Phytochemistry 1991; 30: 3753
    • 4b Kokubun T, Harborne JB, Eagles J, Waterman PG. Phytochemistry 1995; 39: 1033
    • 4c De Lombaert S, Blanchard L, Stamford LB, Tan J, Wallace EM, Satoh Y, Fitt J, Hoyer D, Simonsbergen D, Moliterni J, Marcopoulos N, Savage P, Chou M, Trapani AJ, Jeng AY. J. Med. Chem. 2000; 43: 488
    • 4d Apers S, Vlietinck A, Pieters L. Phytochem. Rev. 2003; 2: 201
    • 4e Wu Y.-J, Sun L.-Q, He H, Chen J, Starrett JE. Jr, Dextraze P, Daris J.-P, Boissard CG, Pieschl RL, Gribkoff VK, Natale J, Knox RJ, Harden DG, Thompson MW, Fitzpatrick W, Weaver D, Wu D, Gao Q, Dworetzky SI. Bioorg. Med. Chem. Lett. 2004; 14: 4533
    • 4f Chu G.-H, Gu M, Cassel JA, Belanger S, Graczyk TM, DeHaven RN, James NC, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE. Bioorg. Med. Chem. Lett. 2005; 15: 5114
    • 4g Sun L.-Q, Takaki K, Chen J, Bertenshaw S, Iben L, Mahle CD, Ryan E, Wu D, Gao Q, Xu C. Bioorg. Med. Chem. Lett. 2005; 15: 1345
    • 4h Saleem M, Kim HJ, Ali MS, Lee YS. Nat. Prod. Rep. 2005; 22: 696
    • 4i Cohen JL, Limon A, Miledi R, Chamberlin AR. Bioorg. Med. Chem. Lett. 2006; 16: 2189
    • 4j Oliveira AM. A. G, Raposo MM. M, Oliveira-Campos AM. F, Machado AE. H, Puapairoj P, Pedro M, São José Nascimento M, Portela C, Afonso C, Pinto M. Eur. J. Med. Chem. 2006; 41: 367
    • 4k Malik S, Nadir UK, Pandey PS. Tetrahedron 2009; 65: 3918
    • 4l Baragona F, Lomberget T, Duchamp C, Henriques N, Lo Piccolo E, Diana P, Montalbano A, Barret R. Tetrahedron 2011; 67: 8731
    • 5a Kuethe JT, Wong A, Journet M, Davies IW. J. Org. Chem. 2005; 70: 3727
    • 5b Bertolini F, Crotti P, Di Bussolo V, Macchia F, Pineschi M. J. Org. Chem. 2007; 72: 7761
    • 5c Li Q.-B, Zhou F.-T, Liu Z.-G, Li X.-F, Zhu W.-D, Xie J.-W. J. Org. Chem. 2011; 76: 7222
    • 5d Xie P, Wang L, Yang L, Li E, Ma J, Huang Y, Chen R. J. Org. Chem. 2011; 76: 7699
    • 5e Takeda N, Ueda M, Kagehira S, Komei H, Tohnai N, Miyata M, Naito T, Miyata O. Org. Lett. 2013; 15: 4382
    • 5f Chen M.-W, Cao L.-L, Ye Z.-S, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2013; 49: 1660
    • 5g Xie P, Li E, Zheng J, Li X, Huang Y, Chen R. Adv. Synth. Catal. 2013; 355: 161
    • 5h Lei X, Jiang C.-H, Wen X, Xu Q.-L, Sun H. RSC Adv. 2015; 5: 14953
    • 5i Koy M, Engle KM, Henling LM, Takase MK, Grubbs RH. Org. Lett. 2015; 17: 1986

      For metal-based syntheses of DHBs, see:
    • 6a Torraca KE, Kuwabe S, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 12907
    • 6b Cheung W.-H, Zheng S.-L, Yu W.-Y, Zhou G.-C, Che C.-M. Org. Lett. 2003; 5: 2535
    • 6c Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 6d Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 6e Neogi A, Majhi TP, Achari B, Chattopadhyay P. Eur. J. Org. Chem. 2008; 330
    • 6f Adams H, Gilmore NJ, Jones S, Muldowney MP, von Reuss SH, Vemula R. Org. Lett. 2008; 10: 1457
    • 6g Niu J, Guo P, Kang J, Li Z, Xu J, Hu S. J. Org. Chem. 2009; 74: 5075
    • 6h Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 6i Ylijoki KE. O, Kündig EP. Chem. Commun. 2011; 47: 10608
    • 6j Huang Z, Jin L, Feng Y, Peng P, Yi H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7151
    • 6k Kshirsagar UA, Regev C, Parnes R, Pappo D. Org. Lett. 2013; 15: 3174
    • 6l Hata K, He Z, Daniliu CG, Itami K, Studer A. Chem. Commun. 2014; 50: 463
    • 6m Zhou Z, Liu G, Chen Y, Lu X. Org. Lett. 2015; 17: 5874
    • 7a Dohi T, Hu Y, Kamitanaka T, Washimi N, Kita Y. Org. Lett. 2011; 13: 4814
    • 7b Dohi T, Hu Y, Kamitanaka T, Kita Y. Tetrahedron 2012; 68: 8424
    • 7c Hu Y, Kamitanaka T, Mishima Y, Dohi T, Kita Y. J. Org. Chem. 2013; 78: 5530
    • 7d Liao L.-H, Zhang M.-M, Liao Y.-J, Yuan W.-C, Zhang X.-M. Synlett 2015; 26: 1720
    • 7e Zhao Y, Huang B, Yang C, Li B, Xia W. Synthesis 2015; 47: 2731
    • 8a Lu A, Hu K, Wang Y, Song H, Zhou Z, Fang J, Tang C. J. Org. Chem. 2012; 77: 6208
    • 8b Jarava-Barrera C, Esteban F, Navarro-Ranninger C, Parra A, Alemán J. Chem. Commun. 2013; 49: 2001
    • 8c Suljić S, Pietruszka J, Worgull D. Adv. Synth. Catal. 2015; 357: 1822
    • 8d Yang W, Liu Y, Zhang S, Cai Q. Angew. Chem. Int. Ed. 2015; 54: 8805
    • 8e Sun X.-X, Zhang H.-H, Li G.-H, Meng L, Shi F. Chem. Commun. 2016; 52: 2968
    • 9a Nichols DE, Hoffman AJ, Oberlender RA, Riggs RM. J. Med. Chem. 1986; 29: 302
    • 9b Shi GQ, Dropinski JF, Zhang Y, Santini C, Sahoo SP, Berger JP, MacNaul KL, Zhou GC, Agrawal A, Alvaro R, Cai TQ, Hernandez M, Wright SD, Moller DE, Heck JV, Meinke PT. J. Med. Chem. 2005; 48: 5589
    • 9c Ortega N, Beiring B, Urban S, Glorius F. Tetrahedron 2012; 68: 5185
    • 10a Liao C.-C In Modern Methodology in Organic Synthesis . Sheno T. Kodansha; Tokyo: 1992: 409
    • 10b Liao C.-C, Peddinti RK. Acc. Chem. Res. 2002; 35: 856
    • 10c Magdziak D, Meek SJ, Pettus TR. R. Chem. Rev. 2004; 104: 1383
    • 11a Quideau S, Pouységu L. Org. Prep. Proced. Int. 1999; 31: 617
    • 11b Singh V. Acc. Chem. Res. 1999; 32: 324
    • 11c Liao C.-C. Pure Appl. Chem. 2005; 77: 1221
    • 11d Hsu D.-S, Hsu P.-Y, Lee Y.-C, Liao C.-C. J. Org. Chem. 2008; 73: 2554
    • 11e Snyder SA, Kontes F. J. Am. Chem. Soc. 2009; 131: 1745
    • 11f Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 11g Suzuki T, Sasaki A, Egashira N, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 9177
    • 12a Surasani SR, Peddinti RK. Tetrahedron Lett. 2011; 52: 4615
    • 12b Surasani SR, Parumala SK. R, Peddinti RK. Org. Biomol. Chem. 2014; 12: 5656
    • 12c Naganaboina RT, Peddinti RK. Tetrahedron 2015; 71: 6245
    • 12d Sharma S, Naganaboina RT, Peddinti RK. RSC Adv. 2015; 5: 100060
  • 13 Parumala SK. R, Surasani SR, Peddinti RK. New J. Chem. 2014; 38: 5268
    • 14a Mal D, Pahari P, Senapati BK. Tetrahedron Lett. 2005; 46: 2097
    • 14b Grecian S, Wrobleski AD, Aubé J. Org. Lett. 2005; 7: 3167
    • 14c Salom-Roig XJ, Renaud P. Synthesis 2006; 3419
    • 14d Tokunaga N, Hayashi T. Adv. Synth. Catal. 2007; 349: 513
    • 14e Lalic G, Corey EJ. Org. Lett. 2007; 9: 4921
    • 14f Giroux M.-A, Guérard KC, Beaulieu M.-A, Sabot C, Canesi S. Eur. J. Org. Chem. 2009; 3871
    • 14g Treece JL, Goodell JR, Velde DV, Porco JA. Jr, Aubé J. J. Org. Chem. 2010; 75: 2028
    • 14h Guo F, Konkol LC, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 18
    • 14i Petrović D, Brückner R. Org. Lett. 2011; 13: 6524
    • 14j Dohi T, Kita Y. Topics Curr. Chem. 2016; 373: 1
  • 15 Parumala SK. R, Peddinti RK. Org. Lett. 2013; 15: 3546
  • 16 Gao S.-Y, Ko S, Lin Y.-L, Peddinti RK, Liao C.-C. Tetrahedron 2001; 57: 297
  • 17 2,3-Dihydrobenzofuran Derivatives 4; General Procedure PhI(OAc)2 (0.177 g, 0.55 mmol, 1.1 equiv) was added to a solution of the appropriate guaiacol derivative 1 (0.5 mmol) in MeOH (5 mL), and the mixture was stirred for 5 min at r.t. After generation of the o-benzoquinone monoketal 2, as indicated by a yellow color of the solution, the MeOH was removed under reduced pressure and the residue was dissolved in CH2Cl2. The solution was cooled to –30 °C and the appropriate alkene (1 mmol) and BF3·OEt2 (1 mmol) were added sequentially. When the reaction was complete (TLC), it was quenched with sat. aq NaHCO3 and the mixture was extracted with CH2Cl2 (2 × 15 mL). The combined organic phases were dried (Na2SO4), filtered, and evaporated to dryness. The crude product was purified by column chromatography (silica gel, 1–2% EtOAc–hexanes). 5-Bromo-7-methoxy-2-phenyl-2,3-dihydrobenzofuran (4aa) Viscous yellow liquid; yield: 0.124 g (82%). IR (KBr): 2928, 2851, 1615, 1484, 1293, 1270, 1197, 1094, 763, 699 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.41–7.29 (m, 5 H), 6.95–6.94 (m, 1 H), 6.91–6.90 (m, 1 H), 5.80 (t, J = 9.0 Hz, 1 H), 3.87 (s, 3 H), 3.61 (dd, J = 9.5, 15.5 Hz, 1 H), 3.23 (dd, J = 8.5, 16.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 147.1 (C), 144.7 (C), 140.9 (C), 129.1 (C), 128.5 (CH), 128.1 (CH), 125.8 (CH), 119.8 (CH), 114.6 (CH), 112.3 (C), 85.1 (CH), 56.1 (OCH3), 38.5 (CH2). 5-Bromo-2-(4-isopropylphenyl)-7-methoxy-2,3-dihydrobenzofuran (4ah) Viscous colorless liquid; yield: 0.140 g (81%). IR (KBr): 2959, 2931, 1615, 1483, 1293, 1195, 1095, 946, 831, 776 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.30 (d, J = 8.0 Hz, 2 H), 7.20 (d, J = 7.5 Hz, 2 H), 6.92 (s, 1 H), 6.88 (s, 1 H), 5.75 (t, J = 8.5 Hz, 1 H), 3.83 (s, 3 H), 3.56 (dd, J = 9.0, 15.5 Hz, 1 H), 3.23 (dd, J = 8.5, 16.0 Hz, 1 H), 2.89 (quint, J = 6.5 Hz, 1 H), 1.23 (s, 3 H), 1.22 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 149.0 (C), 147.2 (C), 144.8 (C), 138.3 (C), 129.3 (C), 126.6 (CH), 126.1 (CH), 119.9 (CH), 114.8 (CH), 112.2 (C), 85.2 (CH), 56.2 (OCH3), 38.3 (CH2), 33.8 (CH3), 23.9 (CH3). 2-(4-Bromophenyl)-5-chloro-7-methoxy-2,3-dihydrobenzofuran (4bc) Viscous colorless liquid; yield: 0.135 g (80%). IR (KBr): 2931, 2840, 1617, 1485, 1297, 1196, 1097, 1072, 946, 826, 790 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.38 (d, J = 8.0 Hz, 2 H), 7.17 (d, J = 7.5 Hz, 2 H), 6.69 (s, 1 H), 6.67 (s, 1 H), 5.66 (t, J = 8.5 Hz, 1 H), 3.77 (s, 3 H), 3.50 (dd, J = 10.0, 16.0 Hz, 1 H), 3.06 (dd, J = 8.5, 15.5 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 146.4 (C), 144.4 (C), 140.1 (C), 131.7 (CH), 128.1 (C), 127.5 (CH), 125.6 (C), 122.0 (C), 116.9 (CH), 111.9 (CH), 84.3 (CH), 56.1 (OCH3), 38.5 (CH2). 5-Chloro-7-methoxy-2-methyl-2-phenyl-2,3-dihydrobenzofuran (4bg) Viscous colorless liquid; yield: 0.092 g (67%). IR (KBr): 2981, 2925, 1616, 1487, 1444, 1301, 1233, 1099, 838, 764 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.46 (d, J = 8.0 Hz, 2 H), 7.34 (t, J = 7.5 Hz, 2 H), 7.24–7.28 (m, 1 H), 6.76 (s, 1 H), 6.74 (s, 1 H), 3.91 (s, 3 H), 3.40 (q, J = 15.5 Hz, 2 H), 1.81 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 146.0 (C), 145.9 (C), 144.6 (C), 128.4 (CH), 127.2 (CH), 125.2 (C), 124.4 (CH), 117.1 (CH), 111.9 (CH), 90.5 (C), 56.2 (OCH3), 45.0 (CH2), 29.2 (CH3). 5-Iodo-7-methoxy-2-methyl-2-phenyl-2,3-dihydrobenzofuran (4cg) Viscous colorless liquid; yield: 0.126 g (69%). IR (KBr): 2966, 1609, 1482, 1294, 1141, 1093, 832, 761 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.47 (d, J = 7.5 Hz, 2 H), 7.36 (t, J = 7.5 Hz, 2 H), 7.29–7.26 (m, 1 H), 7.09 (s, 1 H), 7.07 (s, 1 H), 3.92 (s, 3 H), 3.42 (q, J = 15.5 Hz, 2 H), 1.83 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 147.2 (C), 145.9 (C), 145.3 (C), 129.7 (C), 128.3 (CH), 127.2 (CH), 126.1 (CH), 124.4 (CH), 120.2 (CH), 90.5 (C), 81.4 (C), 56.2 (OCH3), 44.7 (CH2), 29.1 (CH3). trans-5-Iodo-7-methoxy-3-methyl-2-phenyl-2,3-dihydrobenzofuran (4ci) Viscous colorless liquid; yield: 0.130 g (71%). IR (KBr): 2960, 1610, 1479, 1279, 1195, 1078, 965, 833 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.42–7.32 (m, 5 H), 7.08 (s, 2 H), 5.22 (d, J = 9.0 Hz, 1 H), 3.51 (s, 3 H), 3.48 (quint, J = 7.0 Hz, 1 H), 1.41 (d, J = 6.5 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 147.5 (C), 145.1 (C), 139.9 (C), 135.2 (C), 128.6 (CH), 128.4 (CH), 126.2 (CH), 125.0 (CH), 120.5 (CH), 93.3 (CH), 81.9 (C), 56.2 (OCH3), 45.7 (CH), 18.0 (CH3).
  • 18 For the stereochemistry of similar compounds, see ref. 6b and: Juhász L, Szilágyi L, Antus S, Visy J, Zsila F, Simonyi M. Tetrahedron 2002; 58: 4261