Synthesis 2017; 49(24): 5357-5363
DOI: 10.1055/s-0036-1588566
paper
© Georg Thieme Verlag Stuttgart · New York

A Rh(III)-Catalyzed Cascade C–H Functionalization/C(sp3)–C(sp3) Formation/Cyclization Reaction for the Synthesis of Isoquinolinedione Derivatives

Peng Bai
a   Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. of China   Email: huangzhizhen@zju.edu.cn
,
Kenneth L. Huang
b   Lakeside High School, 533 Blue Ridge Drive, Augusta, GA 30809, USA
,
Zhi-Zhen Huang*
a   Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. of China   Email: huangzhizhen@zju.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (No. 21372195) is gratefully acknowledged.
Further Information

Publication History

Received: 03 August 2017

Accepted after revision: 18 August 2017

Publication Date:
25 September 2017 (online)


Abstract

A cascade C–H functionalization/C(sp3)–C(sp3) formation/cyclization reaction of N-methoxybenzamides with diazomal­onates under rhodium(III) catalysis is developed for the efficient synthesis of isoquinolinedione derivatives. A plausible mechanism involving double migratory insertions of carbenes for the formation of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds by rhodium(III) catalysis is also proposed.

Supporting Information

 
  • References


    • For reviews on C–H functionalizations by metal carbene insertions, see:
    • 1a Ye T. McKervey MA. Chem. Rev. 1994; 94: 1091
    • 1b Davies HM. L. Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 1c Davies HM. L. Manning JR. Nature 2008; 451: 417
    • 1d Xiao Q. Zhang Y. Wang J. Acc. Chem. Res. 2013; 46: 236
    • 1e Liu Z. Wang J. J. Org. Chem. 2013; 78: 10024
    • 1f Ford A. Miel H. Ring A. Slattery CN. Maguire AR. McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1g Caballero A. Mar Díaz-Requejo MM. Fructos MR. Olmos A. Urbano J. Pérez PJ. Dalton Trans. 2015; 44: 20295
    • 1h Hu F. Xia Y. Ma C. Zhang Y. Wang J. Chem. Commun. 2015; 51: 7986
    • 2a Shi L. Yu K. Wang B. Chem. Commun. 2015; 51: 17277
    • 2b Shi J. Zhou J. Yan Y. Jia J. Liu X. Song H. Xu HE. Yi W. Chem. Commun. 2015; 51: 688
    • 2c Li XG. Sun M. Liu K. Jin Q. Liu PN. Chem. Commun. 2015; 51: 2380
    • 2d Hyster TK. Ruhl KE. Rovis T. J. Am. Chem. Soc. 2013; 135: 5364
    • 2e Ye B. Cramer N. Angew. Chem. Int. Ed. 2014; 53: 7896
    • 2f Cui S. Zhang Y. Wang D. Wu Q. Chem. Sci. 2013; 4: 3912
    • 3a Chan W.-W. Lo S.-F. Zhou Z. Yu W.-Y. J. Am. Chem. Soc. 2012; 134: 13565
    • 3b Shi Z.-Z. Koester DC. Boultadakis-Arapinis M. Glorius F. J. Am. Chem. Soc. 2013; 135: 12204
    • 4a Mishra NK. Choi M. Jo H. Oh Y. Sharma S. Han SH. Jeong T. Han S. Lee S.-Y. Kim IS. Chem. Commun. 2015; 51: 17229
    • 4b Jiang H. Gao S. Xu J. Wu X. Lin A. Yao H. Adv. Synth. Catal. 2016; 358: 188
    • 5a Yang Y. Wang X. Li Y. Zhou B. Angew. Chem. 2015; 127: 15620
    • 5b Dateer RB. Chang S. Org. Lett. 2016; 18: 68
    • 6a Qi Z. Yu S. Li X. Org. Lett. 2016; 18: 700
    • 6b Choi M. Park J. Mishra NK. Lee S.-Y. Kim JH. Jeong KM. Lee J. Jung YH. Kim IS. Tetrahedron Lett. 2015; 56: 4678
    • 7a Sharma S. Han SH. Han S. Ji W. Oh J. Lee S.-Y. Oh JS. Jung YH. Kim IS. Org. Lett. 2015; 17: 2852
    • 7b Son J.-Y. Kim S. Jeon WH. Lee PH. Org. Lett. 2015; 17: 2518
  • 8 Zhou B. Chen Z. Yang Y. Ai W. Tang H. Wu Y. Zhu W. Li Y. Angew. Chem. 2015; 127: 12289
  • 9 Yu X. Yu S. Xiao J. Wan B. Li X. J. Org. Chem. 2013; 78: 5444
  • 10 Cheng Y. Bolm C. Angew. Chem. Int. Ed. 2015; 54: 12349
  • 11 Yu S. Liu S. Lan Y. Wan B. Li X. J. Am. Chem. Soc. 2015; 137: 1623
  • 12 Bai P. Huang X.-F. Xu G.-D. Huang Z.-Z. Org. Lett. 2016; 18: 3058
  • 13 Han SH. Mishra KN. Kim IS. Bull. Korean Chem. Soc. 2015; 36: 2823
  • 14 Chen X. Xie Y. Xiao X. Li G. Deng Y. Jiang H. Zeng W. Chem. Commun. 2015; 51: 15328
  • 15 Hou W. Yang Y. Wu Y. Feng H. Li Y. Zhou B. Chem. Commun. 2016; 52: 9672
    • 16a Komoda M. Kakuta H. Takahashi H. Fujimoto Y. Kadoya S. Kato F. Hashimoto Y. Bioorg. Med. Chem. 2001; 9: 121
    • 16b Billamboz M. Suchaud V. Bailly F. Lion C. Demeulemeester J. Calmels C. Andreola M. Christ F. Debyser Z. Cotelle P. ACS Med. Chem. 2013; 4: 606
    • 16c Billamboz M. Bailly F. Lion C. Touati N. Vezin H. Calmels C. Andreola M. Christ F. Debyser Z. Cotelle P. J. Med. Chem. 2011; 54: 1812
    • 16d Tsou H. Otteng M. Tran T. Floyd MB. Reich MJr. Birnberg G. Kutterer K. Kaloustian SA. Ravi M. Nilakantan R. Grillo M. McGinnis JP. Rabindran SK. J. Med. Chem. 2008; 51: 3507
  • 17 See Scheme 4: Protonation of rhodium intermediate E leads to intermediate F.
  • 18 CCDC 1572552 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Guimond N. Gouliaras C. Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 20a Jiang Y. Khong VZ. Y. Lourdusamy E. Park CM. Chem. Commun. 2012; 48: 3133
    • 20b Koduri ND. Scott H. Hileman B. Cox JD. Coffin M. Glicksberg L. Hussaini SR. Org. Lett. 2012; 14: 440