Synthesis 2017; 49(22): 5025-5038
DOI: 10.1055/s-0036-1588508
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed C–S Bond Formation via the Cleavage of C–O Bonds in the Presence of S8 as the Sulfur Source

Abed Rostami
a   Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran   Email: a_rostami372@yahoo.com
,
Amin Rostami*
a   Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran   Email: a_rostami372@yahoo.com
,
Arash Ghaderi*
b   Department of Chemistry, College of Sciences, Hormozgan University, 71961 Bandar Abbas, Iran   Email: aghaderi@hormozgan.ac.ir
,
Mohammad Gholinejad
c   Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, 5137-66731 Zanjan, Iran
,
Sajedeh Gheisarzadeh
a   Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran   Email: a_rostami372@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 21 June 2017

Accepted after revision: 23 June 2017

Publication Date:
03 August 2017 (online)


Abstract

Useful and applicable methods for one-pot and odorless synthesis of unsymmetrical and symmetrical diaryl sulfides via C–O bond activation are presented. First, a new efficient procedure for the synthesis of unsymmetrical sulfides using the cross-coupling reaction of phenolic esters such as acetates, tosylates, and triflates and with arylboronic acid or triphenyltin chloride as the coupling partners is reported. Depending on the reaction, S8/KF or S8/NaOt-Bu system is found to be an effective source of sulfur in the presence of copper salts and in poly(ethylene glycol) as a green solvent. Then, the synthesis of symmetrical diaryl sulfides from phenolic compounds by using S8 as the sulfur source and NaOt-Bu in anhydrous DMF at 120 °C under N2 is described. By these protocols, the synthesis of a variety of unsymmetrical and symmetrical sulfides become easier than the available protocols in which thiols and aryl halides are directly used for the preparation of the sulfides.

Supporting Information

 
  • References

    • 1a Fan X. Cui X.-M. Guan Y.-H. Fu L.-A. Lv H. Guo K. Zhu H.-B. Eur. J. Org. Chem. 2014; 3: 498
    • 1b Lu Y. Li X. Wang L. Sun H. Inorg. Chem. Commun. 2014; 41: 51
    • 1c Langer NN. P. Bindrab GS. Budzelaar PH. M. Dalton Trans. 2014; 43: 11286
    • 1d Miller AJ. M. Kaminsky W. Goldberg KI. Organometallics 2014; 33: 1245
    • 1e Tan G. Szilvási T. Inoue TS. Blom B. Driess M. J. Am. Chem. Soc. 2014; 136: 9732
    • 1f Iranpoor N. Panahi F. Org. Lett. 2015; 17: 214
    • 2a Leowanawat P. Zhang N. Percec V. J. Org. Chem. 2012; 77: 1018
    • 2b Quasdorf KW. Tian X. Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
    • 2c Guan B.-T. Wang Y. Li B.-J. Yu D.-G. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
    • 2d Baghbanzadeh M. Pilger C. Kappe CO. J. Org. Chem. 2011; 76: 1507
    • 2e Quasdorf KW. Riener M. Petrova KV. Garg NK. J. Am. Chem. Soc. 2009; 131: 17748
    • 2f Kuwano R. Shimizu R. Chem. Lett. 2011; 40: 913
    • 2g Zhao Y.-L. Li Y. Li Y. Gao L.-X. Han F.-S. Chem. Eur. J. 2010; 16: 4991
    • 2h Chen H. Huang Z. Hu X. Tang G. Xu P. Zhao Y. Cheng C.-H. J. Org. Chem. 2011; 76: 2338
    • 2i Shi C. Aldrich CC. Org. Lett. 2010; 12: 2286
    • 2j Percec V. Bae J.-Y. Hill DH. J. Org. Chem. 2012; 77: 5956
    • 2k Chen G.-J. Han F.-S. Eur. J. Org. Chem. 2012; 3575
    • 2l Li X.-J. Zhang J.-L. Geng Y. Jin Z. J. Org. Chem. 2013; 78: 5078
    • 3a Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 3b Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19
    • 3c Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
    • 3d Tobisu M. Chatani N. Top. Organomet. Chem. 2013; 44: 35
    • 4a Liu G. Huth JR. Olejniczak ET. Mendoza R. De Vries P. Leitza S. Reilly EB. Okasinski GF. Nielsen E. Fesik SW. Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 4b Nielsen SF. Nielsen E. Olsen GM. Liljefors T. Peters D. J. Med. Chem. 2000; 43: 2217
    • 4c Pasquini S. Mugnaini C. Tintori C. Botta M. Trejos A. Arvela RK. Larhed M. Witvrouw M. Michiels M. Christ F. Debyser Z. Corelli F. J. Med. Chem. 2008; 51: 5125
    • 4d Gangjee A. Zeng YB. Talreja T. McGuire JJ. Kisliuk RL. Queener SF. J. Med. Chem. 2007; 50: 5425
    • 4e Faucher A.-M. White PW. Brochu C. Maitre CG. Rancourt J. Fazal G. J. Med. Chem. 2004; 47: 18
    • 4f Wang Y. Chang W. Greenlee VR. Bioorg. Med. Chem. Lett. 2001; 11: 891
    • 4g Nielsen SF. Nielsen E. Olsen GM. Liljefors T. Peters D. J. Med. Chem. 2000; 43: 2217
    • 5a Teruyuki K. Takeaki M. Chem. Rev. 2000; 100: 3205
    • 5b Bichler P. Love JA. Top. Organomet. Chem. 2010; 31: 39
    • 5c Eichman CC. Stambuli JP. Molecules 2011; 16: 590
    • 5d Correa A. Carril M. Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 5e Bahekar SS. Sarkate AP. Wadhai VM. Wakte PS. Shinde DB. Catal. Commun. 2013; 41: 123
    • 5f Sujatha A. Thomas AM. Thankachan AP. Anilkumar G. ARKIVOC 2015; (i): 1
    • 6a Zheng N. McWilliams JC. Fleitz FJ. Armstrong JD. Volante RP. J. Org. Chem. 1998; 63: 9606
    • 6b Mispelaere-Canivet C. Spindler JF. Perrio S. Beslin P. Tetrahedron 2005; 61: 5253
    • 6c Itoh T. Mase T. Org. Lett. 2004; 6: 4587
    • 6d Lee JY. Lee PH. J. Org. Chem. 2008; 73: 7413
    • 6e Percec V. Bae JY. Hill DH. J. Org. Chem. 1995; 60: 6895
    • 6f Firouzabadi H. Iranpoor N. Gholinejad M. Samadi A. J. Mol. Catal. A: Chem. 2013; 377: 190
    • 6g Fernandez-Rodreguez MA. Shen Q. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 6h Ghaderi A. Tetrahedron 2016; 72: 4758
    • 7a Firouzabadi H. Iranpoor N. Gholinejad M. Adv. Synth. Catal. 2010; 352: 119
    • 7b Kuhn M. Falk FC. Paradies J. Org. Lett. 2011; 13: 4100
    • 7c Gholinejad M. Karimi B. Mansouri F. J. Mol. Catal. A: Chem. 2014; 386: 20
    • 7d Mondal J. Modak A. Dutta A. Basu S. Jha SN. Bhattacharyya D. Bhaumik A. Chem. Commun. 2012; 48: 8000
    • 7e Wang L. Zhou WY. Chen SC. He MY. Chena Q. Adv. Synth. Catal. 2012; 354: 839
  • 8 Park N. Park K. Jang M. Lee S. J. Org. Chem. 2011; 76: 4371
    • 9a Li Y. Nie C. Wang H. Li X. Verpoort F. Duan C. J. Org. Chem. 2011; 76: 7331
    • 9b You W. Yan X. Liao Q. Xi C. Org. Lett. 2010; 12: 3930
  • 10 Prasad DJ. C. Sekar G. Org. Lett. 2011; 13: 1008
  • 11 Ke F. Qu Y. Jiang Z. Li Z. Wu D. Zhou X. Org. Lett. 2011; 13: 454
    • 12a Wang F. Cai S. Wang Z. Xi C. Org. Lett. 2011; 13: 3202
    • 12b Zhao P. Wang F. Xi C. Synthesis 2012; 44: 1477
    • 12c Zhao P. Liao Q. Gao H. Xi C. Tetrahedron Lett. 2013; 54: 2357
    • 12d Zhao P. Yin H. Gao H. Xi C. J. Org. Chem. 2013; 78: 5001
    • 12e Firouzabadi H. Iranpoor N. Samadi A. Tetrahedron Lett. 2014; 55: 1212
    • 13a Jiang YW. Qin YX. Xie SW. Zhang XJ. Dong JH. Ma DW. Org. Lett. 2009; 11: 5250
    • 13b Wang H. Jiang L. Chen T. Li Y. Eur. J. Org. Chem. 2010; 2324
    • 13c Martinek M. Korf M. Srogl J. Chem. Commun. 2010; 4387
    • 13d Cheng J.-H. Yi C.-L. Liu T.-J. Lee C.-F. Chem. Commun. 2012; 48: 8440
    • 13e Singh D. Deobald AM. Camargo LR. S. Tabarelli G. Rodrigues OE. D. Braga AL. Org. Lett. 2010; 12: 3288
    • 13f Chen HY. Peng WT. Lee YH. Chang YL. Chen YJ. Lai YC. Jheng NY. Chen HY. Organometallics 2013; 32: 5514
    • 13g Chen C. Xie Y. Chu L. Wang RW. Zhang X. Qing FL. Angew. Chem. Int. Ed. 2012; 52: 2492
    • 13h Shibahara F. Kanai T. Yamaguchi E. Kamei A. Yamauchi T. Murai T. Chem. Asian J. 2014; 9: 237
    • 13i Taniguchi N.  Tetrahedron 2012; 68: 10510
    • 13j Gholinejad M. Firouzabadi H. New J. Chem. 2015; 39: 5953
    • 14a Qiao Z. Liu H. Xiao X. Fu Y. Wei J. Li Y. Jiang X. Org. Lett. 2013; 15: 2594
    • 14b Hou C. He Q. Yang C. Org. Lett. 2014; 16: 5040
    • 14c Li Y. Pu J. Jiang X. Org. Lett. 2014; 16: 2692
    • 14d Qiao Z. Wei J. Jiang X. Org. Lett. 2014; 16: 1212
    • 14e Reeves JT. Camara K. Han ZS. Xu Y. Lee H. Busacca CA. Senanayake CH. Org. Lett. 2014; 16: 1196
    • 14f Zhang Y. Li Y. Zhangc X. Jiang X. Chem. Commun. 2015; 51: 941
    • 14g Gholinejad M. Eur. J. Org. Chem. 2015; 4162
    • 14h Singh N. Singh R. Raghuvanshi DS. Singh KN. Org. Lett. 2013; 15: 5874
    • 14i Arisawa M. Ichikawa T. Yamaguchi M. Org. Lett. 2012; 14: 5318
    • 14j Chen F.-J. Liao G. Li X. Wu J. Shi B.-F. Org. Lett. 2014; 16: 5644
    • 14k Li J. Li C. Yang S. An Y. Wu W. Jiang H. J. Org. Chem. 2016; 81: 7771
    • 14l Li J. Li C. Yang S. An Y. Wu W. Jiang H. J. Org. Chem. 2016; 81: 2875
    • 14m Ravi C. Reddy NN. K. Pappula V. Samanta S. Adimurthy S. J. Org. Chem. 2016; 81: 9964
    • 15a Rostami A. Rostami A. Ghaderi A. Zolfigol MA. RSC Adv. 2015; 5: 37060
    • 15b Rostami A. Rostami A. Ghaderi A. J. Org. Chem. 2015; 80: 8694
    • 15c Rostami A. Rostami A. Iranpoor N. Zolfigol MA. Tetrahedron Lett. 2016; 57: 192
    • 16a Herradura PS. Pendola KA. Guy RK. Org. Lett. 2000; 2: 2019
    • 16b Savarin C. Srogl J. Liebeskind LS. Org. Lett. 2002; 4: 4309
    • 16c Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 16d Xu HJ. Zhao YQ. Feng T. Feng YS. J. Org. Chem. 2012; 77: 2878
    • 16e Yu JT. Guo H. Yi Y. Fei H. Jiang Y. Adv. Synth. Catal. 2014; 356: 749