Synthesis 2017; 49(18): 4350-4356
DOI: 10.1055/s-0036-1588487
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Arylation of Benzothiazoles with Toluene Derivatives­: Synthesis of 2-Arylbenzothiazole

Chengliang Li
a   School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Hongmei Deng*
b   Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai 200444, P. R. of China   Email: hmdeng@staff.shu.edu.cn
,
Tao Jin
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Zhiqiang Liu
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Ruolan Jiang
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Chunju Li
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Xueshun Jia*
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Jian Li*
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
› Author Affiliations
The authors thank the National Natural Science Foundation of China (Nos: 21472121, 21272148) and the State Key Laboratory of Applied Organic Chemistry, Lanzhou University for financial support.
Further Information

Publication History

Received: 22 April 2017

Accepted after revision: 05 June 2017

Publication Date:
25 July 2017 (online)


Abstract

A copper-catalyzed reaction of benzothiazole and readily available toluene derivatives has been disclosed. This protocol is proposed to proceed through the oxidation of toluene and ring opening of benzothiazole, thus providing a new pathway for the synthesis of 2-arylbenzothiazoles.

Supporting Information

 
  • References

    • 1a Aiello S. Wells G. Stone EL. Kadri H. Bazzi R. Bell DR. Stevens MF. G. Matthews CS. Bradshaw TD. Westwell AD. J. Med. Chem. 2008; 51: 5135
    • 1b Mortimer CG. Wells G. Crochard J.-P. Stone EL. Bradshaw TD. Stevens MF. G. Westwell AD. J. Med. Chem. 2006; 49: 179
    • 1c Bradshaw TD. Westwell AD. Curr. Med. Chem. 2004; 11: 1009
    • 1d Weekes AA. Westwell AD. Curr. Med. Chem. 2009; 16: 2430
    • 3a Seijas J. Vazquez-Tato M. Carballido-Reboredo M. Crecente-Campo J. Romar-Lopez L. Synlett 2007; 313
    • 3b Chen Y. Qian L. Zhang W. Han B. Angew. Chem. Int. Ed. 2008; 47: 9330
    • 3c Inamdar SM. More VK. Mandal SK. Tetrahedron Lett. 2013; 54: 579
    • 3d Cho Y.-H. Lee C.-Y. Cheon C.-H. Tetrahedron 2013; 69: 6565
  • 4 Zhang G. Liu C. Yi H. Meng Q. Bian C. Chen H. Jian J.-X. Wu L.-Z. Lei A. J. Am. Chem. Soc. 2015; 137: 9273
    • 5a Han W. Mayer P. Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 2178
    • 5b Wang Z. Li K. Zhao D. Lan J. You J. Angew. Chem. Int. Ed. 2011; 50: 5365
    • 5c Malakar C. Schmidt D. Conrad J. Beifuss U. Org. Lett. 2011; 13: 1378
    • 6a Chiong H. Daugulis O. Org. Lett. 2007; 9: 1449
    • 6b Huang J. Chan J. Chen Y. Borths CJ. Baucom KD. Larsen RD. Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
    • 6c Turner G. Morris J. Greaney M. Angew. Chem. Int. Ed. 2007; 46: 7996
    • 6d Canivet J. Yamaguchi J. Ban I. Itami K. Org. Lett. 2009; 11: 1733
    • 6e Do H. Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
    • 6f Lewis J. Berman A. Bergman R. Ellman J. J. Am. Chem. Soc. 2008; 130: 2493
    • 6g Yamamoto T. Muto K. Komiyama M. Canivet J. Yamaguchi J. Itami K. Chem. Eur. J. 2011; 17: 10113
    • 7a Guchhait SK. Kashyap M. Saraf S. Synthesis 2010; 1166
    • 7b Liu B. Qin X. Li K. Li X. Guo Q. Lan J. You J. Chem. Eur. J. 2010; 16: 11836
    • 7c Ranjit S. Liu X. Chem. Eur. J. 2011; 17: 1105
    • 7d Kirchberg S. Tani S. Ueda K. Yamaguchi J. Studer A. Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
    • 8a Roger J. Doucet H. Org. Biomol. Chem. 2008; 6: 169
    • 8b So C. Lau C. Kwong F. Chem. Eur. J. 2011; 17: 761
    • 8c Ackermann L. Althammer A. Fenner S. Angew. Chem. Int. Ed. 2009; 48: 201
    • 9a Hachiya H. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
    • 9b Chen R. Liu S. Liu X. Yang L. Deng GJ. Org. Biomol. Chem. 2011; 9: 7675
    • 9c Liu B. Guo Q. Cheng Y. Lan J. You JS. Chem. Eur. J. 2011; 17: 13415
    • 10a Liu S. Chen R. Guo X. Yang H. Deng G. Li C.-J. Green Chem. 2012; 14: 1577
    • 10b Yang Z. Chen X. Wang S. Liu J. Xie K. Wang A. Tan Z. J. Org. Chem. 2012; 77: 7086
    • 10c Gao Y. Song Q. Cheng G. Cui X. Org. Biomol. Chem. 2014; 12: 1044
    • 11a Wang J. Zhang X.-Z. Chen S.-Y. Yu X.-Q. Tetrahedron 2014; 70: 245
    • 11b Zhang M. Lu W.-T. Ruan W. Zhang H.-J. Wen T.-B. Tetrahedron Lett. 2014; 55: 1806
    • 12a Curto JM. Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 18
    • 12b Lin Y. Zhu L. Lan Y. Rao Y. Chem. Eur. J. 2015; 21: 14937
    • 12c Wang P. Minegishi T. Ma G. Takanabe K. Satou Y. Maekawa S. Kobori Y. Kubota J. Domen K. J. Am. Chem. Soc. 2012; 134: 2469
    • 12d Zhou W. Zhang L. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7094
    • 13a Aihara Y. Tobisu M. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
    • 13b Xie P. Xie Y. Qian B. Zhou H. Xia C. Huang H. J. Am. Chem. Soc. 2012; 134: 9902
    • 13c Xie P. Xia C. Huang H. Org. Lett. 2013; 15: 3370
    • 13d Liu H. Laurenczy G. Yan N. Dyson PJ. Chem. Commun. 2014; 50: 341
    • 13e Guo L.-N. Wang S. Duan X.-H. Zhou S.-L. Chem. Commun. 2015; 51: 4803
    • 13f Zhou S.-L. Guo L.-N. Wang S. Duan X.-H. Chem. Commun. 2014; 50: 3589
    • 13g Zhou S.-L. Guo L.-N. Wang H. Duan XH. Chem. Eur. J. 2013; 19: 12970
    • 14a Ali W. Behera A. Guin S. Patel BK. J. Org. Chem. 2015; 80: 5625
    • 14b Rout SK. Guin S. Ali W. Gogoi A. Patel BK. Org. Lett. 2014; 16: 3086
    • 14c Rout SK. Guin S. Banerjee A. Khatun N. Gogoi A. Patel BK. Org. Lett. 2013; 15: 4106
    • 14d Yin Z. Sun P. J. Org. Chem. 2012; 77: 11339
    • 14e Wu Y. Choy PY. Mao F. Kwong FY. Chem. Commun. 2013; 49: 689
    • 14f Xu Z. Xiang B. Sun P. RSC Adv. 2013; 3: 1679
    • 15a Liu ZQ. Zhang XL. Li JX. Li F. Li CJ. Jia XS. Li J. Org. Lett. 2016; 18: 4052
    • 15b Li CL. Jin T. Zhang X. Li CJ. Jia XS. Li J. Org. Lett. 2016; 18: 1916
    • 15c Li CL. Deng HM. Li CJ. Jia XS. Li J. Org. Lett. 2015; 17: 5718
    • 16a Tang ZZ. Liu Z. An Y. Jiang RL. Zhang XL. Li CJ. Jia XS. Li J. J. Org. Chem. 2016; 81: 9158
    • 16b Tian YM. Tian LM. Li CJ. Jia XS. Li J. Org. Lett. 2016; 18: 840
    • 16c Tian YM. Tian LM. He X. Li CJ. Jia XS. Li J. Org. Lett. 2015; 17: 4874
    • 16d Cheng GS. He X. Tian LM. Chen JW. Li CJ. Jia XS. Li J. J. Org. Chem. 2015; 80: 11100
    • 16e Jia SL. Su SK. Li CJ. Jia XS. Li J. Org. Lett. 2014; 16: 5604
    • 16f Su SK. Li CJ. Jia XS. Li J. Chem. Eur. J. 2014; 20: 5905
    • 17a Feng J.-B. Wu X.-F. Appl. Organomet. Chem. 2015; 29: 63
    • 17b Ali W. Guin S. Rout SK. Gogoi A. Patel BK. Adv. Synth. Catal. 2014; 356: 3099
    • 17c Yuan J. Ma X. Yi H. Liu C. Lei A. Chem. Commun. 2014; 50: 14386
  • 18 Wang H. Wang L. Shang J. Li X. Wang H. Gui J. Lei A. Chem. Commun. 2012; 48: 76
  • 19 Sun Y.-D. Jiang H.-F. Wu W.-Q. Zeng W. Wu X. Org. Lett. 2013; 15: 1598