Synthesis 2017; 49(18): 4283-4291
DOI: 10.1055/s-0036-1588462
special topic
© Georg Thieme Verlag Stuttgart · New York

tert-Butyl Hypochlorite Induced Cyclization of Ethyl 2-(N-Aryl­carbamoyl)-2-iminoacetates

Dianjun Li
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: liying@lzu.edu.cn   Email: yuwei@lzu.edu.cn
,
Ying Li*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: liying@lzu.edu.cn   Email: yuwei@lzu.edu.cn
,
Wei Yu*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: liying@lzu.edu.cn   Email: yuwei@lzu.edu.cn
› Author Affiliations
The authors thank the National Natural Science Foundation of China (No. 21372108) for financial support
Further Information

Publication History

Received: 12 April 2017

Accepted after revision: 22 May 2017

Publication Date:
03 July 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

Ethyl 2-(N-arylcarbamoyl)-2-iminoacetates can be transformed into the corresponding quinoxalin-2-ones in high yield by using the oxidation system of tert-butyl hypochlorite, tetrabutylammonium iodide and tetrabutylammonium chloride. Oxygen exhibits a beneficial effect on the reaction. The reaction is proposed to follow an iminyl radical cyclization mechanism where azaspirocyclohexadienylperoxyl radical is formed as a key intermediate. The quinoxalin-2-one is derived from the azaspirocyclohexadienylperoxyl radical via concurrent oxygen extrusion and rearrangement.

Supporting Information

 
  • References

    • 1a Studer A. Bossart M. Homolytic Aromatic Substitutions . In Radicals in Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 62-80
    • 1b Bowman WR. Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
    • 1c Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 1d Yu J.-T. Pan C. Chem. Commun. 2016; 52: 2220
    • 1e Gurry M. Aldabbagh F. Org. Biomol. Chem. 2016; 14: 3849
    • 2a Roman DS. Takahashi Y. Charette AB. Org. Lett. 2011; 13: 3242
    • 2b Beaulieu L.-PB. Roman DS. Vallée F. Charette AB. Chem. Commun. 2012; 48: 8249
    • 3a Studer A. Bossart M. Tetrahedron 2001; 57: 9649
    • 3b Chen Z.-M. Zhang X.-M. Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
    • 4a de Turiso FG.-L. Curran DP. Org. Lett. 2005; 7: 151
    • 4b Lanza T. Leardini R. Minozzi M. Nanni D. Spagnolo P. Zanardi G. Angew. Chem. Int. Ed. 2008; 47: 9439
    • 5a Fallis AG. Brinza IM. Tetrahedron 1997; 53: 17543
    • 5b Stella L. Nitrogen-Centered Radicals . In Radicals in Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 407-426
    • 5c Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
    • 5d Kitamura M. Narasaka K. Bull. Chem. Soc. Jpn. 2008; 81: 539
    • 5e Chiba S. Bull. Chem. Soc. Jpn. 2013; 86: 1400
    • 5f Walton JC. Acc. Chem. Res. 2014; 47: 1406
  • 6 Bencivenni G. Lanza T. Leardini R. Minozzi M. Nanni D. Spagnolo P. Zanardi G. J. Org. Chem. 2008; 73: 4721
  • 7 Li Z.-S. Wang W.-X. Yang J.-D. Wu Y.-W. Zhang W. Org. Lett. 2013; 15: 3820
    • 8a Li D. Yang T. Su H. Yu W. Adv. Synth. Catal. 2015; 357: 2529
    • 8b Li D. Ma H. Yu W. Adv. Synth. Catal. 2015; 357: 3696
    • 8c Yang T. Zhu H. Yu W. Org. Biomol. Chem. 2016; 14: 3376
  • 9 For similar observations in the case of reactions under copper catalysis, see: Chiba S. Zhang L. Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
  • 10 Reck R. Jochims JC. Chem. Ber. 1982; 115: 1494
  • 11 Tanner DD. Gidley GC. Das N. Rowe JE. Potter A. J. Am. Chem. Soc. 1984; 106: 5261
  • 12 Noack M. Göttlich R. Eur. J. Org. Chem. 2002; 3171
  • 13 Boukouvalas J. Haynes RK. Peroxyl Radicals in Synthesis . In Radicals in Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 455-484
    • 14a Porter NA. Acc. Chem. Res. 1986; 19: 262
    • 14b Pratt DA. Tallman KA. Porter NA. Acc. Chem. Res. 2011; 44: 458
    • 14c Yin H. Xu L. Porter NA. Chem. Rev. 2011; 111: 5944
    • 15a Courtneidge JL. Bush M. J. Chem. Soc., Perkin Trans. 1 1992; 1531
    • 15b Porter NA. Mills KA. Carter RL. J. Am. Chem. Soc. 1994; 116: 6690
  • 16 Walling C. Heaton L. J. Am. Chem. Soc. 1965; 87: 38
    • 17a Bravo A. Bjørsvik H.-R. Fontana F. Liguori L. Minisci F. J. Org. Chem. 1997; 62: 3849
    • 17b Shchepin R. Möller MN. Kim HH. Hatch DM. Bartesaghi S. Kalyanaraman B. Radi R. Porter NA. J. Am. Chem. Soc. 2010; 132: 17490
  • 19 Kornblum N. DeLaMare HE. J. Am. Chem. Soc. 1951; 73: 880

    • For several recent examples of the Kornblum–DeLaMare reaction, see:
    • 20a Zhang F. Du P. Chen J. Wang H. Luo Q. Wan X. Org. Lett. 2014; 16: 1932
    • 20b Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
    • 20c Guchhait SK. Chaudhary V. Rana VA. Priyadarshani G. Kandekar S. Kashyap M. Org. Lett. 2016; 18: 1534
    • 20d Luo Q. Liu C. Tong J. Shao Y. Shan W. Wang H. Zheng H. Cheng J. Wan X. J. Org. Chem. 2016; 81: 3103
    • 21a Walling C. Kurkov V. J. Am. Chem. Soc. 1966; 88: 4727
    • 21b Walling C. Mintz MJ. J. Am. Chem. Soc. 1967; 89: 1515
  • 22 Carey FA. Sundberg RJ. Advanced Organic Chemistry . 5th ed. Springer; New York: 2007: 1001
  • 23 Benincori T. Pagani SB. Fusco R. Sannicolo F. J. Chem. Soc., Perkin Trans. 1 1988; 2721
  • 24 Harayama T. Tezuka Y. Taga T. Yoneda F. J. Chem. Soc., Perkin Trans. 1 1987; 75