Synlett 2017; 28(15): 2014-2017
DOI: 10.1055/s-0036-1588445
letter
© Georg Thieme Verlag Stuttgart · New York

A Systematic Study of the Synthesis of 2ʹ-Deoxynucleosides by Mitsunobu Reaction

Kohji Seio*
Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, 226-8501, Yokohama, Japan   Email: seio.k.aa@m.titech.ac.jp
,
Munefumi Tokugawa
Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, 226-8501, Yokohama, Japan   Email: seio.k.aa@m.titech.ac.jp
,
Kazuhei Kaneko
Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, 226-8501, Yokohama, Japan   Email: seio.k.aa@m.titech.ac.jp
,
Takashi Shiozawa
Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, 226-8501, Yokohama, Japan   Email: seio.k.aa@m.titech.ac.jp
,
Yoshiaki Masaki
Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, 226-8501, Yokohama, Japan   Email: seio.k.aa@m.titech.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Number 15H01062, 15K13738, and 26288075
Further Information

Publication History

Received: 30 March 2017

Accepted after revision: 09 May 2017

Publication Date:
07 June 2017 (online)


Abstract

The Mitsunobu reaction has emerged as an important alternative for the preparation of synthetic 2′-deoxynucleosides, which have various biological and biotechnological applications. In this work, the Mitsunobu-based synthesis of 2′-deoxynucleosides was systematically studied. The effect of phosphine, azodicarbonyl reagent, and solvent on the product yield and α/β ratio was investigated, and the highest yield and β-selectivity were obtained using (n-Bu)3P and 1,1′-(azodicarbonyl)dipiperidine in DMF. The reaction was successfully applied to various nucleobase analogues.

Supporting Information

 
  • References and Notes

  • 1 McGuigan C. Yarnold CJ. Jones G. Velázquez S. Barucki H. Brancale A. Andrei G. Snoeck R. De Clercq E. Balzarini J. J. Med. Chem. 1999; 42: 4479
    • 2a Tokugawa M. Masaki Y. Canggadibrata JC. Kaneko K. Shiozawa T. Kanamori T. Grøtli M. Wilhelmsson LM. Sekine M. Seio K. Chem. Commun. 2016; 52: 3809
    • 2b Sandin P. Lincoln P. Brown T. Wilhelmsson LM. Nat. Protoc. 2007; 2: 615
    • 3a Okamoto I. Miyatake Y. Kimoto M. Hirao I. ACS Synth. Biol. 2016; 5: 1220
    • 3b Winiger CB. Shaw RW. Kim M.-J. Moses JD. Matsuura MF. Benner SA. ACS Synth. Biol. 2017; 6: 194
    • 3c Malyshev DA. Romesberg FE. Angew. Chem. Int. Ed. 2015; 54: 11930
    • 3d Cavanagh BL. Walker T. Norazit A. Meedeniya AC. Molecules 2011; 16: 7980
    • 4a Marfurt J. Parel SP. Leumann CJ. Nucleic Acids Res. 1997; 25: 1875
    • 4b Timofeev EN. Goryaeva BV. Florentiev VL. J. Biomol. Struct. Dyn. 2006; 24: 183
    • 4c Kolganova NA. Shchyolkina AK. Chudinov AV. Zasedatelev AS. Florentiev VL. Timofeev EN. Nucleic Acids Res. 2012; 40: 8175
    • 5a Ingale SA. Seela F. Tetrahedron 2014; 70: 380
    • 5b Singer M. Nierth A. Jäschke A. Eur. J. Org. Chem. 2013; 2766
    • 5c Seela F. Peng X. Collect. Czech. Chem. Commun. 2006; 71: 956
    • 5d Seela F. Peng X. Synthesis 2004; 1203
    • 5e Ramasamy K. Imamura N. Robins RK. Revankar GR. Tetrahedron Lett. 1987; 28: 5107
    • 5f Kazimierczuk Z. Cottam HB. Revankar GR. Robins RK. J. Am. Chem. Soc. 1984; 106: 6379
    • 6a Shigeta S. Mori S. Watanabe F. Takahashi K. Nagata T. Koike N. Wakayama T. Saneyoshi M. Antiviral Chem. Chemother. 2002; 13: 67
    • 6b Niedballa U. Vorbrüggen H. Angew. Chem., Int. Ed. Engl. 1970; 9: 461
    • 6c Kotick MP. Szantay C. Bardos TJ. J. Org. Chem. 1969; 34: 3806
    • 6d Michel J. Gueguen G. Vercauteren J. Moreau S. Tetrahedron 1997; 53: 8457
  • 7 Szarek WA. Depew C. Jarrell HC. Jones JK. N. J. Chem. Soc., Chem. Commun. 1975; 648
  • 8 Hu W. Wang PA. Song C. Pan Z. Wang Q. Guo X. Yu X. Shen Z. Wang S. Chang J. Bioorg. Med. Chem. Lett. 2010; 20: 7297
    • 9a Downey AM. Richter C. Pohl R. Mahrwald R. Hocek M. Org. Lett. 2015; 17: 4604
    • 9b Downey AM. Pohl R. Roithová J. Hocek M. Chem. Eur. J. 2017; 23: 3910
  • 10 Walker JA. Chen JJ. Wise DS. Townsend LB. J. Org. Chem. 1996; 61: 2219
  • 11 Tsunoda T. Yamamiya Y. Ito S. Tetrahedron Lett. 1993; 34: 1639
  • 12 Dai Q. Ran C. Harvey RG. Org. Lett. 2005; 7: 999
  • 13 Khan AT. Ghosh S. Choudhury LH. Eur. J. Org. Chem. 2004; 2198
  • 14 Johnson DC. II. Widlanski TS. Org. Lett. 2004; 6: 4643