Synthesis 2017; 49(16): 3775-3793
DOI: 10.1055/s-0036-1588425
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Synthesis of 3-Aminoimidazo[1,2-a]pyrimidines with Triflic Anhydride

Robert P. Law
GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK   Email: eric.p.talbot@gsk.com
,
Sabri Ukuser
GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK   Email: eric.p.talbot@gsk.com
,
Daniel T. Tape
GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK   Email: eric.p.talbot@gsk.com
,
Eric P. A. Talbot*
GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK   Email: eric.p.talbot@gsk.com
› Author Affiliations
Further Information

Publication History

Received: 23 April 2017

Accepted after revision: 24 April 2017

Publication Date:
07 June 2017 (online)


Abstract

The regioselective synthesis of 3-aminoimidazo[1,2-a]pyrimidines via triflic anhydride mediated amide activation and intramolecular cyclisation is reported. The nature of the added pyridine base allows access to both regioisomers from a simple common precursor. The method tolerates a range of functional groups and provides access to novel heterocyclic scaffolds.

Supporting Information

 
  • References

  • 1 Akritopoulou-Zanze I. Wakefield BD. Gasiecki A. Kalvin D. Johnson EF. Kovar P. Djuric SW. Bioorg. Med. Chem. Lett. 2011; 21: 1480
  • 2 Kim O. Jeong Y. Lee H. Hong S.-S. Hong S. J. Med. Chem. 2011; 54: 2455
  • 3 McKeown MR. Shaw DL. Fu H. Liu S. Xu X. Marineau JJ. Huang Y. Zhang X. Buckley DL. Kadam A. Zhang Z. Blacklow SC. Qi J. Zhang W. Bradner JE. J. Med. Chem. 2014; 57: 9019
  • 4 Hieke M. Rödl CB. Wisniewska JM. La Buscató E. Stark H. Schubert-Zsilavecz M. Steinhilber D. Hofmann B. Proschak E. Bioorg. Med. Chem. Lett. 2012; 22: 1969
  • 5 Keith JM. Jones WM. Pierce JM. Seierstad M. Palmer M. Webb JA. Karbarz MJ. Scott BP. Wilson SJ. Luo L. Wennerholm ML. Chang L. Brown SM. Rizzolio M. Rynberg R. Chaplan SR. Breitenbucher JG. Bioorg. Med. Chem. Lett. 2014; 24: 737
  • 6 Reutlinger M. Rodrigues T. Schneider P. Schneider G. Angew. Chem. Int. Ed. 2014; 53: 582
  • 7 Rival Y. Grassy G. Taudou A. Ecalle R. Eur. J. Med. Chem. 1991; 26: 13
  • 8 Shukla NM. Salunke DB. Yoo E. Mutz CA. Balakrishna R. David SA. Bioorg. Med. Chem. 2012; 20: 5850
  • 9 Groebke K. Weber L. Mehlin F. Synlett 1998; 661
  • 10 Blackburn C. Guan B. Fleming P. Shiosaki K. Tsai S. Tetrahedron Lett. 1998; 39: 3635
  • 11 Bienaymé H. Bouzid K. Angew. Chem. Int. Ed. 1998; 37: 2234
  • 12 Shaaban S. Abdel-Wahab BF. Mol. Diversity 2016; 20: 233
  • 13 Blackburn C. Guan B. Tetrahedron Lett. 2000; 41: 1495
  • 14 Katritzky AR. Xu Y. Tu H. J. Org. Chem. 2003; 68: 4935
  • 15 During the preparation of this manuscript, Charette and co-workers reported a method for the synthesis of 3-aminoimidazo[1,2-a]pyridines from α-aminopyridinyl amides; see: Régnier S. Bechara WS. Charette AB. J. Org. Chem. 2016; 81: 10348
    • 16a Charette AB. Grenon M. Lemire A. Pourashraf M. Martel J. J. Am. Chem. Soc. 2001; 123: 11829
    • 16b Charette AB. Mathieu S. Martel J. Org. Lett. 2005; 7: 5401
    • 16c Pelletier G. Charette AB. Org. Lett. 2013; 15: 2290

      For a recent review, see:
    • 17a Kaiser D. Maulide N. J. Org. Chem. 2016; 81: 4421

    • For carbon and other heteroatom nucleophile attacks, see:
    • 17b Bélanger G. Larouche-Gauthier R. Ménard F. Nantel M. Barabé F. Org. Lett. 2005; 7: 4431
    • 17c Larouche-Gauthier R. Bélanger G. Org. Lett. 2008; 10: 01
    • 17d Bélanger G. Larouche-Gauthier R. Ménard F. Nantel M. Barabé F. J. Org. Chem. 2006; 71: 704
    • 17e Bélanger G. O’Brien G. Larouche-Gauthier R. Org. Lett. 2011; 13: 4268
    • 18a Huang P.-Q. Lang Q.-W. Wang Y.-R. J. Org. Chem. 2016; 81: 4235
    • 18b Pelletier G. Bechara WS. Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 19a Xiao K.-J. Wang Y. Ye K.-Y. Huang P.-Q. Chem. Eur. J. 2010; 16: 12792
    • 19b Huang P.-Q. Huang Y.-H. Xiao K.-J. Wang Y. Xia X.-E. J. Org. Chem. 2015; 80: 2861
    • 19c Bechara WS. Pelletier G. Charette AB. Nat. Chem. 2012; 4: 228
    • 19d Xiao K.-J. Wang Y. Huang Y.-H. Wang X.-G. Huang P.-Q. J. Org. Chem. 2013; 78: 8305
    • 20a Peng B. Geerdink D. Fare C. Maulide N. J. Am. Chem. Soc. 2013; 135: 14968
    • 20b Peng B. Geerdink D. Farès C. Maulide N. Angew. Chem. Int. Ed. 2014; 53: 5462
    • 20c Tona V. de la Torre A. Padmanaban M. Ruider S. González L. Maulide N. J. Am. Chem. Soc. 2016; 138: 8348
  • 21 Medley JW. Movassaghi M. J. Org. Chem. 2009; 74: 1341
  • 22 Movassaghi M. Hill MD. Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
  • 23 Movassaghi M. Hill MD. J. Am. Chem. Soc. 2006; 128: 14254
  • 24 Binkley RW. Ambrose MG. J. Org. Chem. 1983; 48: 1776

    • For the reactivity of tertiary amides with Tf2O at high and low temperature, see:
    • 25a Charette AB. Grenon M. Can. J. Chem. 2001; 79: 1694
    • 25b Gobeaux B. Ghosez L. Tetrahedron Lett. 1991; 32: 3827
    • 25c Valerio V. Madelaine C. Maulide N. Chem. Eur. J. 2011; 17: 4742
    • 25d Peng B. O’Donovan DH. Jurberg ID. Maulide N. Chem. Eur. J. 2012; 18: 16292
    • 25e Madelaine C. Valerio V. Maulide N. Angew. Chem. Int. Ed. 2010; 49: 1583
    • 25f White KL. Mewald M. Movassaghi M. J. Org. Chem. 2015; 80: 7403