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Abstract A novel approach has been developed for the enantioselec-
tive synthesis of α-chiral γ-acetoxyallylboronates via the copper(I)-cata-
lyzed γ-boryl substitution of allyl acylals. This reaction proceeded with
high E/Z selectivity and enantioselectivity (E/Z = >99:1, up to 80% yield,
up to 99% ee). The subsequent allylation of aldehyde with the allylboro-
nate afforded the monoprotected anti-1,2-diol derivative with high ste-
reoselectivity.

Key words boron, enantioselectivity, copper, catalysis, allylation

The asymmetric allylation of aldehydes with allylboro-
nates is a useful transformation in organic synthesis be-
cause of the high synthetic utility of the 1,2-diol products.1
Allylboronates bearing a substituent at their γ-position rel-
ative of the boron atom are especially important organome-
tallic reagents for the construction of consecutive chiral
centers via C–C bond-forming reactions because they can
react with aldehydes in a highly stereospecific manner
through a six-membered transition state.2 In particular, op-
tically active γ-alkoxyallylboronates have been widely used
for the preparation of chiral 1,2-diol moieties, which can be
found in a wide range of natural products and synthetic
drugs.3 However, the synthetic methods used for the con-
struction of these boronates typically require a boron
source bearing stoichiometric chiral auxiliary.4

We previously reported the first catalytic synthesis of
α-chiral linear or carbocyclic γ-alkoxyallylboronates via the
copper(I)-catalyzed γ-boryl substitution of allyl acetals
(Scheme 1).5 Although our previous reaction showed high
enantioselectivity and broad substrate scope in terms of its
functional-group compatibility, it was not amenable to ste-
rically hindered substrates because they exhibited poor re-

activity toward the boryl copper nucleophile. In addition,
this reaction required harsh reaction conditions to allow for
the removal of the benzyl groups from the monoprotected
1,2-diols, which were obtained by the allylation of alde-
hydes with the corresponding γ-alkoxyallylboronates. Fur-
thermore, the route required for the synthesis of the diben-
zyl acetal substrates showed limited substrate scope, as
well as being a laborious and time-consuming procedure.6

Scheme 1  Copper(I)-catalyzed enantioselective boryl substitution of 
allyl acylals

To address these issues, we focused on allyl acylals as al-
ternative substrates for the copper-catalyzed boryl substi-
tution reaction. Allyl acylals have been shown to be well
suited to nucleophilic substitution reactions, such as palla-
dium-catalyzed asymmetric alkylations7 or Lewis acid cata-
lyzed cyanation.8 We therefore expected that allyl acylals
would be more reactive than allyl acetals toward nucleop-
hilic boryl substitution reactions because the acetoxy group
in the former is more electron withdrawing than the ether
group in the latter, making the LUMO of the allyl acylal sub-
strate lower in energy and more reactive toward a nucleo-
philic boryl copper intermediate.
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Furthermore, acetyl groups can be removed under mild-
er conditions than those required to remove ether groups,
making this process more efficient than our previous meth-
od.9 Notably, a facile synthetic method has been reported
for the direct construction of allyl acylals from aldehydes
and acetic anhydride using an acid catalyst.10

Herein, we report the enantioselective synthesis of α-
chiral γ-acetoxyallylboronates using a chiral copper catalyst
and bis(pinacolato)diboron [B2(pin)2] as a boron source. No-
tably, this reaction was successfully applied to a wide range
of allyl acylal substrates, including sterically hindered com-
pounds, to give the desired products in good yields.

Initial optimization studies focused on the E/Z selectivi-
ty and enantioselectivity of the copper(I)-catalyzed boryl
substitution of an allyl acylal to give the corresponding all-
ylboronate. The reaction of acylal (Z)-1a with B2(pin)2 in the
presence of CuCl/(R,R)-BenzP* as a ligand (5 mol%) and KOt-Bu
as a base (1 equiv) in THF or toluene afforded mixtures of
the corresponding E and Z products (Table 1, entries 1 and
2).11 In our previous study involving the borylation of allyl
acetals, we only ever observed the formation of the E iso-

mer as a single product, which we attributed to the sub-
strate undergoing an anti SN2′ reaction mechanism with a
fixed conformation because of the 1,3-allylic strain of the
substrate (see the Supporting Information).5,12

The use of 1,3-dimethyl-2-imidazolidinone (DMI) as a
solvent provided the E product with high E/Z selectivity and
excellent enantioselectivity (73% yield, E/Z = 98:2, 89% ee;
Table 1, entry 3). Several other chiral ligands, including
(R,R)-QuinoxP*, (R)-Segphos, and (R,R)-Me-Duphos, were
also tested, but resulted in poor yields and E/Z selectivities
(Table 1, entries 4–6). The amounts of base and B2(pin)2
added to the reaction also had a considerable impact in the
reactivity. For example, the use of a catalytic amount of
KOt-Bu (10 mol%) yielded a trace amount of the desired
product, whereas the use of small excesses of KOt-Bu (1.5
equiv) and B2(pin)2 (2.0 equiv) resulted in high yield with
excellent E/Z selectivity and enantioselectivity (79% yield,
E/Z = >99:1, 95% ee; Table 1, entry 8).13

As shown in Scheme 2, various α-chiral γ-acetoxyallyl-
boronates were obtained in high yields and enantioselectiv-
ities under the optimized reaction conditions. Furthermore,

Table 1  Optimization of the Reaction Conditions for the Copper(I)-Catalyzed Enantioselective Boryl Substitution of Allyl Acylal (Z)-1aa

Entry Solvent Ligand Time (h) E/Zb Yield (%)c ee (%)d

1 THF (R,R)-BenzP* 30  82:18 78 93

2 toluene (R,R)-BenzP* 48  76:24 74 92

3 DMI (R,R)-BenzP* 45  98:2 73 89

4e DMI (R,R)-QuinoxP* 24  90:10 30 –

5e DMI (R)-Segphos 24  87:13 23 –

6e DMI (R,R)-Me-Duphos* 24  79:21 30 –

7f DMI (R,R)-BenzP* 24    – trace –

8g DMI (R,R)-BenzP* 28 >99:1 79 95
a Reagents and conditions: CuCl (0.01 mmol), ligand (0.01 mmol), (Z)-1a (0.2 mmol), B2(pin)2 (0.3 mmol), and KOt-Bu (0.2 mmol) in solvent (0.4 mL) at 0 °C.
b The E/Z selectivity was determined by GC.
c NMR yield.
d The ee values of the products were determined by HPLC analysis.
e The ee value of the major product was difficult to determine using HPLC analysis because both SiO2 and chiral column chromatography resulted in an insuffi-
cient separation of the major product and the unconsumed substrate.
f 10 mol% of KOt-Bu was used.
g 2.0 equiv of B2(pin)2 and 1.5 equiv of KOt-Bu were used; 0.5 mmol scale.
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several optically active products bearing an alkyl substitu-
ent (e.g., R = Me, hexyl, methylcyclopentyl) were obtained
in high yields and enantioselectivities [(S,E)-2b, 80% yield,
99% ee; (S,E)-2c, 80% yield, 98% ee; (S,E)-2d, 76% yield, 94%
ee]. This reaction also showed good functional-group toler-
ance, as exemplified by the boryl substitution of substrates
bearing a silyl ether or acetoxy group, which proceeded in
high yield and excellent enantioselectivity without any
degradation of the functional groups [(S,E)-2e, 77% yield,
93% ee; (S,E)-2f, 60% yield, 93% ee; (S,E)-2g, 62% yield, 95%
ee]. σ-Branched allyl acylals [(Z)-1h and (Z)-1i], which have
steric congestion around their C=C bond, also reacted
smoothly to afford the corresponding borylated products
(58% and 42% yield, respectively), but the enantiopurities of
these products were unfortunately low (59% and 55% ee, re-
spectively), compared with 2b and 2c. The borylation of the
E substrate (E)-1j (E/Z = 95:5) proceeded with poor enanti-
oselectivity to give the corresponding product with the op-
posite absolute configuration for the boron atom [(R,E)-2j,
81% yield, 74% ee, E/Z = 91:9].

Scheme 2  Substrate scope of the copper(I)-catalyzed enantioselective 
boryl substitution of allyl acylal (Z)-1. Reagents and conditions: CuCl 
(0.025 mmol), (R,R)-BenzP* (0.025 mmol), (Z)-1 (0.5 mmol), B2(pin)2 
(0.85 mmol) and KOt-Bu (0.6 mmol) in DMI (1.0 mL) at 0 °C. The ee val-
ues of the products were determined by HPLC analysis. a 1.5 equiv of 
KOt-Bu and 2.0 equiv of B2(pin)2 were used. b NMR yield. c THF (0.3 mL) 
and DMI (0.3 mL) were used as a solvent; 10 mol% of CuCl and (R,R)-
BenzP* were used. d THF (1.0 mL) was used as a solvent; 15 mol% of 
CuCl and (R,R)-BenzP* were used; 0.2 mmol scale.

We then proceeded to compare the reactivities of the al-
lyl acetal and acylal substrates. Ally acetal 3 and acylal 1k,
which both have a trisubstituted alkene moiety, were se-
lected as model substrates. The boryl substitution of acetal
3 provided only a trace amount of the corresponding bory-
lated product (E)-4 in 4 hours. Even after an extended reac-
tion time (>24 h), the allyl acetal 3 remained largely intact.
The low conversion of the acetal substrate was attributed to
steric hindrance around the C=C double bond of the sub-

strate and the poor leaving group ability of the methyl ether
group compared with the acetyl group. In contrast, the acy-
lal substrate 1k reacted much more effectively than the ace-
tal to give the borylated product in 49% yield after 24 hours
(Scheme 3). These results therefore demonstrate that acylal
substrates can undergo allyl substitution much more effec-
tively than the corresponding acetals.

Scheme 3  γ-Borylation of trisubstituted allyl acetal and acylal with Cu-
Cl/Xantphos catalyst system. Reagents and conditions: CuCl/Xantphos (5 
mol%), B2(pin)2 (1.5 equiv), KOt-Bu (1.0 equiv), THF, 30 °C.

The allylboronates (S,E)-2f prepared using our new
method were subsequently applied to the stereoselective
allylation of aldehyde (Scheme 4). Octynal was successfully
allylated with boronate (S,E)-2f in the presence of ZnBr2,
which was added as a Lewis acid catalyst.14,15 We previously
found that ZnBr2 is an efficient catalyst for enhancing the
stereoselectivity and accelerating the reaction rate for the
allylation of aldehydes with γ-alkoxyallylboronates.5 With
this in mind, we investigated the reaction of octynal with
(S,E)-2f in the presence of ZnBr2. Pleasingly, this reaction
provided the desired product in high stereoselectivity and
good E/Z selectivity [(E)-anti-5, 68% yield, 96% ee, E/Z =
94:6].

Scheme 4  Aldehyde allylation with optically active γ-acetoxyallylboro-
nate (S,E)-2f. Reagents and conditions: (S,E)-2f (0.2 mmol), aldehyde (0.4 
mmol), and dry ZnBr2 (15 mol %) in CH2Cl2 (0.4 mL) at 0 °C. Dry ZnBr2 
was required to obtain high levels of stereoselectivity. (S,E)-2f with 95% 
ee was used. The minor syn isomers of 5 were present in trace amounts, 
which were detected by 1H NMR analysis of the crude reaction mixtures. 
The ee value of the major product was determined by HPLC analysis. 
The E/Z ratios of the anti product were determined by 1H NMR and HPLC 
analyses.

The acetyl group in the allylation product (E)-anti-5 was
readily removed under acidic conditions (Scheme 5, condi-
tions A) to give the corresponding diol in 73% yield without
lowering its enantiomeric purity. The acetyl group was also
removed under basic conditions to afford the desired prod-
uct (E)-anti-6 in good yield without any degradation of the
functional group or loss of optical purity (conditions B).
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Scheme 5  Deprotection of the acetyl group in the allylation products 
under acidic and basic conditions. Conditions A: Sc(OTf)3 (2.0 equiv), 
MeOH–H2O, r.t., 24 h; conditions B: K2CO3 (2.0 equiv), MeOH–H2O, r.t., 
30 min.

In summary, we have developed a new method for the
asymmetric synthesis of chiral γ-acetoxyallylboronates via
the copper(I)-catalyzed boryl substitution of allyl acylals.
The resulting allylboronates were used to achieve the high-
ly stereoselective allylation of aldehydes. Furthermore, the
acetyl groups of the allylated products were readily re-
moved under basic and acidic conditions to give the corre-
sponding 1,2-diols. This reaction therefore represents a
useful method for the synthesis of 3-(E)-alkenyl-anti-1,2-
diols.
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0.25:99.75, 0.5 mL/min, 40 °C]: tR (major) = 25.44 min; tR
(minor) = 24.83 min.

(14) Kobayashi, S.; Endo, T.; Schneider, U.; Ueno, M. Chem. Commun.
2010, 46, 1260.

(15) (a) Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron Lett. 2005, 46,
8981. (b) Rauniyar, V.; Hall, D. G. J. Am. Chem. Soc. 2004, 126,
4518. (c) Ishiyama, T.; Ahiko, T.-A.; Miyaura, N. J. Am. Chem. Soc.
2002, 124, 12414. (d) Kennedy, J.; Hall, D. G. J. Am. Chem. Soc.
2002, 124, 11586.
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2017, 28, 270–274


