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Ultrasound-Accelerated Amide Coupling Reactions Directed toward
the Synthesis of 1-Acetyl-3-carboxamide-B-carboline Derivatives

of Biological Importance
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Abstract Several biologically important 1-acetyl-3-carboxamide-B-
carboline derivatives were rapidly synthesized by ultrasound-promoted
amide coupling of 1-acetyl-9H-pyrido[3,4-b]indole-3-carboxylic acid
with substituted aromatic amines. The major advantages of the pro-
posed method are that use of ultrasound irradiations afforded the de-
sired products in a drastically reduced reaction time and in excellent
yields compared with conventional stirring.

Key words ultrasound, B-carboline, amide coupling, polycyclic indoles

Marine natural products have increasingly become ma-
jor leads in drug discovery, often showing a unique bio-
chemical mode of action.!? Indoles continue to attract ex-
tensive synthetic interest, due to their divergent pharmaco-
logical activities and also because the rigid framework can
lead to compounds of marked selectivity in their interac-
tions with enzymes or receptors.>-

The B-carboline ring system containing a pyridoindole
structure is a component of structures with a vast spectrum
of biological properties,®'® such as antimicrobial,!” antivi-
ral,'® antitumor,'®% anticonvulsant,?! and parasiticidal ac-
tivity.?? Other B-carboline derivatives inhibit cyclin-depen-
dent kinase (CDK) 1, IkappaB kinase (IKK), and topoisomer-
ase 1.22 However, an important challenge is the scarce
natural availability of marine B-carbolines, which hinders
biological screening in structure-activity relationship (SAR)
studies. Therefore, efficient chemical synthesis?* of these
marine compounds in larger quantities is necessary to in-
vestigate their biological activities and is the focus of the
work reported herein.

90-94% yield

1-Acetyl-3-carboxamide-B-carboline derivatives have
been synthesized by a biocatalytic pathway using the McbA
enzyme. However, yields of the target compounds are not
high. Additionally, such biocatalytic approaches take longer
to establish on an industrial scale.?® Other synthetic ap-
proaches suffer from drawbacks such as multistep proto-
cols,?” or extended reaction times?® with overall yields of
19% and 72%, respectively. Thus, there remains a need for
the development of more efficient, convenient and opera-
tionally simple approaches for the rapid synthesis of 1-ace-
tyl-3-carboxamide-B-carboline derivatives.

Ultrasound-assisted organic reactions have emerged as
an innovative technique in a wide variety of conversions.?’-
30 Use of ultrasound irradiation results in accelerated reac-
tion rates, energy conservation and minimization of waste
as compared with traditional methods.?! In continuation of
our interest in the synthesis of a wide range of heterocyclic
systems,3? we herein report a novel ultrasound-promoted
amide coupling for the rapid synthesis of 1-acetyl-3-car-
boxamide-B-carboline derivatives in good to excellent
yields with a notable reduction in completion time com-
pared with classical methods of amide coupling.

Firstly, synthesis of B-carboline derivatives 3a-c, which
are already known for their antimalarial activity,> was car-
ried out by reacting 1-acetyl-9H-pyrido[3,4-b]indole-3-car-
boxylic acid (1)* with the phenylethanamines 2a/2b and
indolyl ethanamine 2c¢ under ultrasonic irradiation (UI) at
room temperature (Table 1). As outlined in Table 1, ultra-
sound irradiation reduced the completion time of the reac-
tions from several hours to minutes and yields were also
improved from 81-83% (under conventional conditions) to
91-92%. The NMR spectroscopic and mass spectrometric
data were in excellent agreement with those reported pre-
viously.>*
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Table 1 Synthesis of 1-Acetyl-3-carboxamide-B-carboline Derivatives
under Ultrasound Irradiation or Conventional Stirring?

o (0]
OH NH\/\
— - N Ar
N EDC-HCI, N\ /
\ 4 + HoN o~ HOBt
Ar ———> NH
NH DIPEA, DMF
o o
1 2a/2b/2c 3a/3b/3c
Product Ar Ultrasonic irradiation Conventional

Time (min) Yield (%)® Time (h) VYield (%)

3a AAﬁj\(j 30 19 16 81
3b fj\@\ 30 92 18 83
O/

3¢ 7 35 92 15 82

H

2 Reaction conditions: 1 (1.0 equiv.), 2a-c (1.2 equiv), DIPEA (2.1 equiv),
EDC-HCI (1.1 equiv), HOBt (1.1 equiv), DMF, rt.
b Isolated yield.

We extended our study to demonstrate the substrate
scope of the reaction with 1-acetyl-9H-pyrido[3,4-b]in-
dole-3-carboxylic acid (1) using fluorinated and non-fluori-
nated aromatic amines 2d-k for the formation of various 1-
acetyl-3-carboxamide-B-carboline derivatives 3d-k in ex-
cellent yields of 90-94% under ultrasonic irradiation (Table
2). All products were analyzed by IR, "H NMR, *C NMR and
HRMS analysis. From Table 2, it is clear that the reaction ac-
commodated a range of substituents such as fluoro- and
trifluoromethyl-groups at different positions on the aro-
matic ring.

In conclusion, we have reported an ultrasound-acceler-
ated, efficient amide coupling reaction to provide efficient
access to 1-acetyl-3-carboxamide-B-carboline derivatives.
The products were obtained in excellent yields with short
reaction times and the protocol accommodates a variety of
functionality.
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Table 2 Substrate Scope of the Synthesis of Novel Fluorinated/Non-
fluorinated B-Carboline Derivatives?
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2 Reaction conditions: 1 (1.0 equiv), 2d-k (1.2 equiv), DIPEA (2.1 equiv),
EDC-HCI (1.1 equiv), HOBt (1.1 equiv), DMF, rt.
b Isolated yield.
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