Synlett 2017; 28(11): 1368-1372
DOI: 10.1055/s-0036-1588158
letter
© Georg Thieme Verlag Stuttgart · New York

Copper Triflate Catalyzed Oxidative α-Allylation of Glycine Derivatives

Ting-Ting Chen
College of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. of China   Email: c.cai@njust.edu.cn
,
Chun Cai*
College of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. of China   Email: c.cai@njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 07 January 2017

Accepted after revision: 26 February 2017

Publication Date:
15 March 2017 (online)


Abstract

Copper triflate catalyzed oxidative C–H functionalization of glycine derivatives with allyltributyltin has been established using oxygen or tert-butyl hydroperoxide as oxidant. Various glycine esters and glycine amides were suitable substrates for this oxidative allylation reaction and afforded the desired homoallylic amines in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Li CJ, Li Z. Pure Appl. Chem. 2006; 78: 935-935
    • 1b Campos KR. Chem. Soc. Rev. 2007; 36: 1069-1069
    • 1c Li CJ. Acc. Chem. Res. 2009; 42: 335-335
    • 1d Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780-1780
    • 1e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215-1215
    • 1f Girard SA, Knauber T, Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74-74
    • 2a Zhao L, Li CJ. Angew. Chem. Int. Ed. 2008; 47: 7075-7075
    • 2b Zhang G, Zhang Y, Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429-10429
    • 2c Gao XW, Meng Q.-Y, Xiang M, Chen B, Feng K, Tung CH, Wu LZ. Adv. Synth. Catal. 2013; 355: 2158-2158
    • 2d Gao XW, Meng QY, Li JX, Zhong JJ, Lei T, Li XB, Tung CH, Wu LZ. ACS Catal. 2015; 5: 2391-2391
    • 2e Wei XH, Wang GW, Yang SD. Chem. Commun. 2015; 51: 832-832
    • 2f Xie Z, Jia J, Liu X, Liu L. Adv. Synth. Catal. 2016; 358: 919-919
  • 3 Xie J, Huang ZZ. Angew. Chem. Int. Ed. 2010; 49: 10181-10181
  • 4 Wei WT, Song RJ, Li JH. Adv. Synth. Catal. 2014; 356: 1703-1703
    • 5a Wang ZQ, Hu M, Huang XC, Gong LB, Xie YX, Li JH. J. Org. Chem. 2012; 77: 8705-8705
    • 5b Zhu S, Rueping M. Chem Commun. 2012; 48: 11960-11960
    • 5c Huo C, Wang C, Wu M, Jia X, Xie H, Yuan Y. Adv. Synth. Catal. 2014; 356: 411-411
  • 6 Salman M, Zhu ZQ, Huang ZZ. Org. Lett. 2016; 18: 1526-1526
    • 7a Zhao L, Basle O, Li CJ. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 4106-4106
    • 7b Xie Z, Liu X, Liu L. Org. Lett. 2016; 18: 2982-2982
  • 8 Zhu ZQ, Bai P, Huang ZZ. Org. Lett. 2014; 16: 4881-4881
    • 9a Robl JA, Cimarusti MP, Simpkins LM, Brown B, Ryono DE, Bird JE, Asaad MM, Schaeffer TR, Trippodo NC. J. Med. Chem. 1996; 39: 494-494
    • 9b Bosque I, González-Gómez JC, Foubelo F, Yus M. J. Org. Chem. 2012; 77: 780-780
    • 10a Huang JM, Wang XX, Dong Y. Angew. Chem. Int. Ed. 2011; 50: 924-924
    • 10b Beuchet P, Marrec NL, Mosset P. Tetrahedron Lett. 1992; 33: 5959-5959
    • 10c Yasuda M, Sugawa Y, Yamamoto A, Shibata I, Baba A. Tetrahedron Lett. 1996; 37: 5951-5951
    • 10d Wang DK, Zhou YG, Tang Y, Hou XL, Dai LX. J. Org. Chem. 1999; 64: 4233-4233
  • 11 Kumaraswamy G, Murthy AN, Pitchaiah A. J. Org. Chem. 2010; 75: 3916-3916
  • 12 Wang J, Yang S. Tetrahedron Lett. 2016; 57: 3444-3444
  • 13 Yoo W.-J, Tanoue A, Kobayashi S. Asian J. Org. Chem. 2014; 3: 1066-1066
  • 14 General Procedure for the Allylation of N-Aryl Glycine Esters 3a N-PMP glycine ester 1a (0.2 mmol) and Cu(OTf)2 (10 mol%) were reacted under oxygen atmosphere (1.0 atm) in DCE (1.0 mL) at 40 °C. After the glycine ester disappeared (by TLC), allyltributyltin (2, 0.24 mmol) was added, and the mixture was stirred for another 6 h. After the reaction finished, the mixture was directly purified by flash chromatography to afford the desired product 3a; 73% yield. 1H NMR (500 MHz, CDCl3): δ = 6.77 (d, J = 8.5 Hz, 2 H), 6.60 (d, J = 8.5 Hz, 2 H), 5.80 (td, J = 17.1, 7.2 Hz, 1 H), 5.25–5.11 (m, 2 H), 4.18 (q, J = 7.1 Hz, 2 H), 4.05 (q, J = 6.3 Hz, 1 H), 3.91 (s, 1 H), 3.74 (s, 3 H), 2.58 (dq, J = 14.0, 6.9 Hz, 2 H), 1.24 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 172.64, 151.81, 139.75, 131.97, 117.83, 114.23, 113.90, 60.08, 56.27, 54.75, 36.23, 13.33. MS (EI): m/z =249 [M+].
  • 15 General Procedure for the Allylation of N-Aryl Glycine Amide 3k N-PMP glycine amide 1k (0.2 mmol), Cu(OTf)2 (10 mol%), and TBHP (1.0 equiv, 5.5 M in decane) were reacted in DCE (1.0 mL) at r.t. After the glycine amide disappeared (by TLC), allytributyltin (2, 0.24 mmol) was added, and the mixture was stirred for another 6 h. After the reaction finished, the mixture was directly purified by flash chromatography to afford desired product 3k; 73% yield. 1H NMR (500 MHz, CDCl3): δ = 6.89 (s, 1 H), 6.72 (d, J = 8.8 Hz, 2 H), 6.48 (d, J = 8.8 Hz, 2 H), 5.69 (td, J = 17.2, 7.2 Hz, 1 H), 5.21–5.05 (m, 2 H), 3.68 (s, 3 H), 3.66 (s, 1 H), 3.57 (d, J = 8.6 Hz, 1 H), 2.74 (d, J = 5.0 Hz, 3 H), 2.70 (dd, J = 10.0, 4.4 Hz, 1 H), 2.46–2.30 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 172.72, 152.31, 139.84, 133.03, 118.21, 114.03, 113.96, 58.15, 54.78, 36.91, 25.05. MS (EI): m/z = 234 [M+].
  • 16 Boess E, Schmitz C, Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317-5317
    • 17a Scott M, Sud A, Boess E, Klussmann M. J. Org. Chem. 2014; 79: 12033-12033
    • 17b Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062-11062
    • 17c Tian JS, Loh TP. Angew. Chem. Int. Ed. 2010; 49: 8417-8417
  • 18 Zhi H, Ung SP. M, Liu Y, Zhao L, Li CJ. Adv. Synth. Catal. 2016; 358: 2553-2553